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Preface

These are the proceedings of the Workshop on Sequences, Subsequences, and
Consequences that was held at the University of Southern California (USC),
May 31 - June 2, 2007. There were three one-hour Keynote lectures, 16 invited
talks of up to 45 minutes each, and 1 “contributed” paper.

The theory of sequences from discrete symbol alphabets has found practical
applications in many areas of coded communications and in cryptography, in-
cluding: signal patterns for use in radar and sonar; spectral spreading sequences
for CDMA wireless telephony; key streams for direct sequence stream-cipher
cryptography; and a variety of forward-error-correcting codes.

The workshop was designed to bring leading researchers on “sequences” from
around the world to present their latest results, interchange information with one
another, and especially to inform the larger audience of interested participants,
including faculty, researchers, scholars, and students from numerous institutions,
as well as the readers of these proceedings, about recent developments in this
important field.

There were invited speakers from Canada, China, Germany, India, Israel,
Norway, Puerto Rico, and South Korea, in addition to those from the USA.
Support for the workshop was generously provided by the Office of the Dean of
the Viterbi School of Engineering, by the Center for Communications Research
(CCR-La Jolla), and by the United States National Science Foundation (NSF).
This support is hereby gratefully acknowledged.

As the principal organizers of the workshop and its technical program, we
wish to thank the speakers, all the participants, and the above-mentioned or-
ganizations that provided funding. Our special thanks go to Milly Montene-
gro, Gerrielyn Ramos, and Mayumi Thrasher at USC for all the arrangements
before, during, and after the workshop, and for their considerable help, along
with Xinxin Fan and Honggang Hu at the University of Waterloo (Canada) and
Young-Joon Kim at Yonsei University (South Korea), in preparing, typing, and
formatting many of the manuscripts.

September 2007 Solomon W. Golomb
Guang Gong
Tor Helleseth

Hong-Yeop Song
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Periodic Binary Sequences: Solved and Unsolved

Problems

Solomon W. Golomb

University of Southern California

Abstract. The binary linear feedback shift register sequences of degree
n and maximum period p = 2n − 1 (the m-sequences) are useful in
numerous applications because, although deterministic, they satisfy a
number of interesting “randomness properties”.

An important open question is whether a binary sequence of period
p = 2n − 1 with both the span-n property and the two-level correlation
property must be an m-sequence.

There is a direct correspondence between m-sequences of degree n
and primitive polynomials of degree n over GF (2). Several conjectures
are presented about primitive polynomials with a bounded number of
terms.

1 Introduction

Feedback shift register sequences have been widely used as synchronization
codes, masking or scrambling codes, and for white noise signals in communi-
cation systems, signal sets in CDMA (code division multiple access) communi-
cations, key stream generators in stream cipher cryptosystems, random number
generators in many cryptographic primitive algorithms, and as testing vectors
in hardware design.

Notation:

• F = GF (2) = {0, 1}
• F

n
2 = {(a0, a1, · · · , an−1)|ai ∈ F2}, a vector space over F2 of dimension n.

• A boolean function of n variables, i.e., f : F
n
2 → F2, which can be represented

as follows:

f(x0, x1, · · · , xn−1) =
∑

ci1i2···itxi1xi2 · · · xit , ci1i2···it ∈ F (1)

where the sum runs through all subsets {i1, · · · , it} of {0, 1, · · · , n − 1}. This
shows that there are 22n

different boolean functions of n variables.

An n-stage shift register is a circuit consisting of n consecutive 2-state
storage units (flips-flops) regulated by a single clock. At each clock pulse, the
state (1 or 0) of each memory stage is shifted to the next stage in line. A shift

S.W. Golomb et al. (Eds.): SSC 2007, LNCS 4893, pp. 1–8, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 S.W. Golomb

an−1 a1 a0

f(x0, x1, . . . , xn−1)

Fig. 1. A Diagram of FSR of Degree n

register is converted into a code generator by including a feedback loop, which
computes a new term for the left-most stage, based on the n previous terms. In
Figure 1, we see a diagram of a feedback shift register (FSR).

Each of the squares is a 2-state storage unit. The n binary storage elements
are called the stages of the shift register, and their contents (regarded as either
a binary number or a binary vector, n bits in length) is called a state of the shift
register. (a0, a1, · · · , an−1) ∈ Fn is called an initial state of the shift register.
The feedback function f(x0, x1, · · · , xn−1) is a boolean function of n variables,
defined in (1). At every clock pulse, there is a transition from one state to the
next. To obtain a new value for stage n, we compute f(x0, x1, · · · , xn−1) of all
the present terms in the shift register and use this in stage n. For example, the
next state of the shift register in Figure 1 becomes (a1, a2, · · · , an) where

an = f(a0, a1, · · · , an−1).

After the consecutive clock pulses, a feedback shift register outputs a sequence:

a0, a1, · · · , an, · · · . (2)

The sequence satisfies the following recursion relation

ak+n = f(ak, ak+1, · · · , ak+n−1), k = 0, 1, · · · . (3)

Any n consecutive terms of the sequence in (2),

ak, ak+1, · · · , ak+n−1

represents a state of the shift register in Figure 1. A state (or vector) diagram
is a diagram that is drawn based on the successors of each of the states. The
output sequence is called a feedback shift register sequence.

If the feedback function f(x0, x1, · · · , xn−1) is a linear function, then the out-
put sequence is called a linear feedback shift register (LFSR) sequence. Otherwise,
it is called a nonlinear feedback shift register (NLFSR) sequence.

Examples. In Figure 2, we see a 3-stage shift register with a linear feedback
function f(x0, x1, x2) = x0 + x1.
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+

0 10

Fig. 2. An LFSR of Degree 3

In Figure 3, we see an n-stage shift register with a linear feedback function.

+

01 1 1 0 1 10 0

+ +

Fig. 3. An LFSR of Degree n

When f is linear, i.e.,

f(x0, x1, · · · , xn−1) =
n−1∑

i=0

cixi, ci ∈ F2

the elements of a satisfy the following recursion relation:

ak+n =
n−1∑

i=0

ciak+1, k = 0, 1, · · · . (4)

m-Sequences: f(x) =
n−1∑
i=0

cixi is primitive over F2.

2 Polynomial Conjectures

The shift register

Out

+ (mod 2)

x1 x2 x3 xn

×c1 ×c2 ×c3 ×cn

corresponds to the polynomial f(x) = 1 +
n∑

i=1

cix
i, and produces an m-sequence

(starting from any initial state except x1 = x2 = · · · = xn = 0) if and only
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if f(x) is primitive over GF (2). This requires that f(x) is irreducible over
GF (2), and is equivalent to: f(x) divides xt + 1 for t = p = 2n − 1 and for no
smaller positive integer value of t.

The number of such primitive polynomials of degree n over GF (2) is known to
be φ(2n − 1)/n, where φ is Euler’s phi-function. This is the number of cyclically
distinct m-sequences of degree n.

Many unsolved problems concern the existence of such primitive polynomials
with a restricted number of terms. The two strongest conjectures are:

Conjecture 1. For infinitely many values of n there are primitive trinomials,
f(x) = xn + xa + 1, 0 < a < n.

Conjecture 2. For all degrees n ≥ 5, there are primitive pentanomials,
xn + xa3 + xa2 + xa1 + 1, 0 < a1 < a2 < a3 < n.

Perhaps the weakest conjecture of this type is:

Conjecture 3. There is a finite positive integer m such that, for infinitely many
degrees n, there is a primitive polynomial f(x) of degree n having no more than
m terms.

Conjecture 1 is the special case of Conjecture 3 with m = 3. Conjecture 2 would
imply Conjecture 3 with m = 5. I would hope that someone will prove Conjecture
3, perhaps with a very large value of m. Subsequent effort would then be devoted
to reducing this value of m.

Even stronger than Conjecture 1 would be:

Conjecture 4. The trinomial xn + x + 1 is primitive for infinitely many values
of n.

For the foreseeable future I do not expect this to be proved.
An empirical observation that I made some 50 years ago, that there are no

primitive trinomials when n is a multiple of 8, was proved by Richard Swan,
who showed that xn + xa + 1, 0 < a < n and n a multiple of 8, has an even
number of irreducible factors.

I can easily prove: If there is a primitive trinomial of odd degree n ≥ 5, then
there is also a primitive pentanomial of this degree n. I conjecture that this is
also true for even degree n > 5, and I expect that someone can prove this, as:

Conjecture 5. For all degrees n ≥ 5, if there is a primitive trinomial of degree
n, then there is a primitive pentanomial of degree n.

Over 75 years ago, Øystein Ore proved:

Theorem1. If f(x) = 1 +
n∑

i=1

cix
i is primitive, then f(x) = 1 +

n∑
i=1

cix
2i−1 is

irreducible.
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3 “Randomness Properties” of m-Sequences

It is the remarkable “randomness properties” of the m-sequences that makes
them so useful in many applications: cryptography, radar, GPS, “Monte
Carlo” random number generation, CDMA, etc.

Here are the “randomness properties” of these m-sequences (the ones with
maximum period 2n − 1.

P-1. In each period of 2n − 1 bits, there are 2n−1 1’s and 2n−1 − 1 0’s. (The
balance property).

P-2. (The “Run Property”.) In each period there are 2n−1 “runs”. Since runs
of 1’s alternate with runs of 0’s, half the runs (2n−2) are runs of 1’s, and
half (2n−2) are runs of 0’s. Half the runs of each type have length 1; 1

4 of
the runs of each type have length 2; 1

8 of the runs of each type have length
3; · · ·; there is one run of each type of length n − 2; finally, there is one run
of 0’s of length n − 1, and one run of 1’s of length n. (This is the expected
distribution of run lengths when tossing a random perfect coin.)

P-3. (The “Span n” Property.) As we slide a window of length n around
one cycle of the sequence, we see every n-bit binary number, except 00 · · ·0,
exactly once.

P-4. (The Multiplier Property.) If we take every second term of the sequence
(repeating around the cycle to get a full 2n −1 terms), we get back the same
sequence (possibly rotated cyclically).

P-5. (The 2-level autocorrelation property.) If we compare the sequence
of period p = 2n − 1 with each of its (non-zero) cyclic shifts, we see 2n−1

disagreements and 2n−1 − 1 agreements.

We define the “autocorrelation function” C(τ) of the sequence, at a shift
of τ , to be C(τ) = Aτ−Dτ

Aτ +Dτ
, where Aτ = # of agreements at a shift of τ , and

Dτ = # of disagreements at a shift of τ . We find

C(τ) =
{

1 at τ = 0
− 1

p for 0 < τ < p.

Example

τ shifted sequence Aτ Dτ C(τ)
0 1 1 1 0 1 0 0 7 0 1
1 0 1 1 1 0 1 0 3 4 −1/7
2 0 0 1 1 1 0 1 3 4 −1/7
3 1 0 0 1 1 1 0 3 4 −1/7
4 0 1 0 0 1 1 1 3 4 −1/7
5 1 0 1 0 0 1 1 3 4 −1/7
6 1 1 0 1 0 0 1 3 4 −1/7

It is this autocorrelation property that makes these sequences ideal for
use in radar.
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0

-6 -5 -4 -3 -2 -1 1 2 3 4 5 6

+1

C(τ)

τ

P-6. The Cycle-and-Add Property: Every m-sequence has the property that,
when added, term-by-term “modulo 2”, to any cyclic shift of itself, what re-
sults is merely a new cyclic shift.

Example

1110100 1110100 1110100 1110100
+ 0111010 + 0011101 + 1001110 + 0100111

1001110 1101001 0111010 1010011

3.1 Relationships of These “Randomness Properties” (Among All
Binary Sequences with Period 2n − 1)

P-1

P-6

P-4

P-5

P-2

P-3

Balance

Runs

Span-n

Multiplier

2-level
correlation

m-Sequences

• There are
(

2n − 1
2n−1

)
= (2n−1)!

2n−1!(2n−1−1)! P-1 sequences

• There are 22n−1−n = 22n−1

2n P-3 sequences.
• There are only φ(2n−1)

n ≤ 2n−2
n P-6 “m-sequences”.

3.2 My Main Conjecture

If a sequence satisfies both P-3 and P-5, it must be an m-sequence (P-6)!

Conjecture 6. A sequence of period 2n −1 which has both span n and two-level
autocorrelation must be an m-sequence.
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An example of a sequence with both P-2 (the run property) and P-4 (the
multiplier property) which has neither P-3 nor P-5 already occurs at period
p = 25 − 1 = 31.

Unsolved Problem: For what larger degrees n do such examples occur?

An example of a sequence with both P-3 (the span n property) and P-4 (the
multiplier property), but without P-5 (the 2-level correlation property) occurs
at period p = 27 − 1 = 127.

Such an example will occur whenever xn + x + 1 is primitive, with odd n > 3
( as here with n = 7).

Unsolved Problem: Are these the only examples of sequences with both P-3
and P-4 but without P-5 (and therefore not m-sequences)?

An example of a sequence with both P-2 (the run property) and P-5 (2-
level autocorrelation) but without P-3 (the span n property) occurs at period
p = 27 − 1 = 127. (This example was found in an example of a sequence in one
of the six families of P-5 sequences in Baumert’s book.)

Unsolved Problem: What other examples are there of sequences with P-2 and
P-5 but without P-3 (and therefore not m-sequences)?

As early as 1954, I asked the question: What are all the balanced binary
sequences with 2-level autocorrelation?

At that time, I knew only of the m-sequences and the Quadratic Residue
(Legendre) sequences. This question can be formulated as: “What are all the
cyclic Hadamard difference sets?”

These are the cyclic (v, k, λ) difference sets with v = 4t − 1, k = 2t − 1, and
λ = t − 1.

Conjecture 7. For such a difference set to exist, v must have one of three
forms:

i) v = 4t − 1 prime;
ii) v = 4t − 1 = p(p + 2), a product of the twin primes p and q = p + 2; and
iii) v = 4t − 1 = 2n − 1.

A stronger conjecture is:

Conjecture 8. The only cyclic (v, k, λ) Hadamard difference sets when v �=2n−1
come from three constructions:

i) v = 4t − 1 prime with the Quadratic Residue construction;
ii) v = 4t − 1 = 4a2 + 27 prime, with Hall’s sextic residue sequence con-

struction; and
iii) v = 4t − 1 = p(p + 2), p and p + 2 are both primes, with the twin prime

construction (using the Jacobi symbol) of Stanton and Sprott.

Extensive computer searches have failed to find any other examples, with
v �= 2n − 1.
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3.3 Cyclic Hadamard Difference Sets when v = 2n − 1

Finally, we have the question of cyclic Hadamard difference sets when v = 2n−1.
The known examples include:

i) the m-sequences, for all n ≥ 2 (Singer difference sets);
ii) the Quadratic Residue sequences when v = 2n −1 is a Mersenne prime;
iii) the Hall’s sextic residue sequences when v = 2n−1 = 4a2+27 = prime,

where it has been shown that there are only three such cases (v = 25 − 1 =
31, v = 27 − 1 = 127, and v = 217 − 1 = 131, 071);

iv) the GMW construction and all its generalization, when n (in v =
2n − 1) is composite, n > 4;

v) 3-term and 5-term sums of decimations of m-sequences, and the Kasami
power function constructions;

vi) the Welch-Gong transforms of 5-term sequences;
vii) the three families of “hyper-oval sequences”: Segré sequences, and Glynn

type 1 and type 2 sequences.

Details of all these constructions, including variant constructions that lead to
the same sequences, can be found in the 2005 book Signal Design for Good
Correlation, by S. Golomb and G. Gong.

Exhaustive computer searches have been completed for all cyclic Hadamard
difference sets of period 2n − 1 for all n ≤ 10. (Starting at n = 5 in the early
1950’s, one new value of n has been successfully searched in each succeeding
decade.)

The aforementioned constructions account for all of the individual examples
which have been found. Hence:

Conjecture 9. All the constructions which yield cyclic Hadamard difference
sets are now known.

I am not sure that I believe this one.
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On Boolean Functions Which Are Bent and

Negabent

Matthew G. Parker1 and Alexander Pott2

1 The Selmer Center, Department of Informatics, University of Bergen, N-5020
Bergen, Norway

2 Institute for Algebra and Geometry, Faculty of Mathematics,
Otto-von-Guericke-University Magdeburg, D-39016 Magdeburg, Germany

Abstract. Bent functions f : F
m
2 → F2 achieve largest distance to

all linear functions. Equivalently, their spectrum with respect to the
Hadamard-Walsh transform is flat (i.e. all spectral values have the same
absolute value). That is equivalent to saying that the function f has
optimum periodic autocorrelation properties. Negaperiodic correlation
properties of f are related to another unitary transform called the nega-
Hadamard transform. A function is called negabent if the spectrum under
the nega-Hadamard transform is flat. In this paper, we consider functions
f which are simultaneously bent and negabent, i.e. which have optimum
periodic and negaperiodic properties. Several constructions and classifi-
cations are presented.

Keywords: bent function, Boolean function, unitary transform, Hada-
mard-Walsh transform, correlation.

1 Introduction

Boolean functions f : F
m
2 → F2 play an important role in cryptography. They

should satisfy several properties, which are quite often impossible to be satisfied
simultaneously. One property is the nonlinearity of a Boolean function, which
means that the function is as far away from all linear functions as possible.
Functions which achieve this goal are called bent functions. Equivalently, all
Hadamard-Walsh coefficients of f are equal in absolute value.

There is another criteria which may be viewed as the negaperiodic analogue
of the bent criteria. In spectral terms, it may be formulated as follows: Find
functions whose nega-Hadamard spectrum is flat, i.e. all spectral values under
the nega-Hadamard transform are equal in absolute value. Many bent functions
are known, and also many negabent functions are known: It turns out that
every linear function is negabent! In this paper, we are going to investigate the
intersection of these two sets, i.e. we are searching for bent functions which are
simultaneously negabent. At first view, it is not clear that such objects exist.
An infinite series of bent-negabent functions has been found in [1,2].

We give necessary and sufficient conditions for quadratic functions to be both
bent and negabent, which is based on [2]. It turns out that such quadratic bent-
negabent functions exist for all even m, which generalizes the series in [2].

S.W. Golomb et al. (Eds.): SSC 2007, LNCS 4893, pp. 9–23, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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More generally, we can describe all Maiorana-McFarland type bent functions
which are simultaneously negabent. It seems to be difficult to exploit this con-
dition in general.

The concept of a dual bent function is well known. If f is bent-negabent,
then the dual has the same property. There is another interesting transformation
which turns a bent-negabent function into a bent-negabent function. We call this
Schmidt complementation since it is based on a construction in [4]. Therefore, we
can construct orbits of bent-negabent functions starting from just one example.
We may repeatedly apply dualization and Schmidt complementation. We will
report some computational results.

This paper is organized as follows. In Section 2 we summarize some of the
main results on bent and negabent functions which are needed throughout this
paper.

In Section 3, we consider quadratic bent-negabent functions. In Section 4 we
investigate Maiorana-McFarland bent functions. Transformations which preserve
bent-negabentness are investigated in Section 5, in particular the Schmidt com-
plementation. Finally, computational results are contained in the last Section 6.

2 Preliminaries

Let Vm denote the m-dimensional vector space F
m
2 . We consider functions f̃ :

Vm → C. In many cases, the image set is just {±1}. Then we say that the
function is Boolean. If f : Vm → F2, we may easily turn it into a “complex-
valued” Boolean function:

f̃(x) := (−1)f(x).

Conversely, any function f̃ : Vm → {±1} determines a function f : Vm → F2

by replacing −1 by 1 and 1 by 0. We also call f Boolean. The set of Boolean
functions f̃ : Vm → C is embedded in a 2m-dimensional unitary vector space V
with an inner product

(f̃ , g̃) =
∑

x∈Vm

f̃(x)g̃(x). (1)

A function f̃ : Vm → C is determined by the values f̃(x). It will be useful to
interpret this vector of “function values” as a polynomial in C[ξ1, . . . , ξm]: We
define the multivariate polynomial

F =
∑

x∈Vm

axξx, (2)

where ξx := ξx1
1 · · · ξxm

m , and ax = f̃(x) for x ∈ Vm. We call F the indicator
polynomial of f̃ . If f : Vm → F2, we first have to turn f into a complex-valued
function (−1)f , as described above.

Note that f : Vm → F2 itself may also be defined as a multivariate polynomial.
Both polynomials, f and its indicator F , describe the same object of interest
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(the Boolean function f), but in a completely different way. Therefore, we will
write x when we deal with f : Vm → F2, and ξ when dealing with the indicator.

The set of polynomials
∑

x∈Vm
axξx forms a complex vector space L of di-

mension 2m. On this vector space, we define the usual inner product:

(F, G) :=
∑

x∈Vm

axbx,

where F =
∑

axξx, G =
∑

bxξx. If F and G are the indicator polynomials of
two functions f̃ and g̃, then

(F, G) :=
∑

x∈Vm

f̃(x)g̃(x),

which is the same as (1). This shows that the indicator map I : V → L which
maps f̃ to F (as defined in (2)) is a unitary transform. Now we describe two
important and interesting unitary transforms L → L. Let F :=

∑
x axξx be a

polynomial in L. We define the Hadamard transform

Hm(F ) =
∑

u∈Vm

âuξu,

where
âu =

1√
2m

∑

x∈Vm

ax(−1)(x,u),

i.e. we evaluate the polynomial F (now considered as a mapping) at the vector
(ξ1, . . . , ξm) with ξi = (−1)ui , and divide by 2m/2. We will also denote âu by
Hm(F )(u). By (·, ·), we denote the standard inner product on Vm.

It is well known and easy to see that the transform Hm is unitary, and it can
be described (after fixing an appropriate basis of L) by the following matrix:

1√
2m

(H ⊗ · · · ⊗ H)

where

H =
(

1 1
1 −1

)
.

We call this tensor product Hm. If F is the indicator function of a Boolean
function f : Vm → F2, then

Hm(F )(u) =
1√
2m

∑

x∈Vm

(−1)f(x)+(u,x).

This is the classical Hadamard-Walsh transform of f . The function f is called
bent if |Hm(F )(u)| = 1 for all u ∈ Vm. Since

∑
x(−1)f(x)+(u,x) ∈ Z, bent

functions may exist only if
√

2m is an integer, hence if m is even. Actually, for
all even m bent functions do exist, see [5], for instance. The article [5] includes
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an excellent survey on bent functions. Another good source for classical material
on bent functions is [6] or [7], for instance.

The transform Hm is an involution, hence we have the following well known
result:

Theorem 1. If f : Vm → F2 is a bent function, then Hm((−1)f ) is a Boolean
function, which is again bent. We call this the dual of f , denoted by f⊥.

Example 1. The Boolean function f : V4 → F2 defined by f(x) = x1x2 + x3x4

is bent: The indicator polynomial of (−1)f is

F = 1 + ξ1ξ2ξ3ξ4 + ξ1ξ3 + ξ1ξ4 + ξ2ξ3 + ξ2ξ4 + ξ1 + ξ2 + ξ3 + ξ4

−(ξ1ξ2 + ξ3ξ4 + ξ1ξ2ξ3 + ξ1ξ2ξ4 + ξ1ξ3ξ4 + ξ2ξ3ξ4).

Using just the definition of H, we obtain

H4(F ) = 1 + ξ1ξ2ξ3ξ4 + ξ1ξ3 + ξ1ξ4 + ξ2ξ3 + ξ2ξ4 + ξ1 + ξ2 + ξ3 + ξ4

−(ξ1ξ2 + ξ3ξ4 + ξ1ξ2ξ3 + ξ1ξ2ξ4 + ξ1ξ3ξ4 + ξ2ξ3ξ4).

This is the indicator function of the dual of f . In general, it is less straightforward
to compute the function f⊥ that corresponds to this indicator, but it turns out
that

f⊥ = x1x2 + x3x4,

so, in this case, f is self-dual with respect to H.

Let I =
√−1 be the complex unit. Another unitary transform Nm is obtained

if we evaluate F at all ±I-vectors (I · (−1)u1 , . . . , I · (−1)um) of length m. We
define

Nm(F ) =
∑

u∈Vm

ãuξu,

where
ãu =

1√
2m

∑

x∈Vm

ax

∏

i:xi=1

I2ui+1,

where we compute 2ui + 1 modulo 4.
Again, we write Nm(F )(u) instead of ãu.
We call this transform the nega-Hadamard transform Nm. In matrix terms,

it is described by the m-fold tensor product

1√
2m

(N ⊗ · · · ⊗ N)

where

N =
(

1 I
1 −I

)
.

Another way to compute Nm(F )(u) is

Nm(F )(u) =
1√
2m

∑

x∈Vm

ax · (−1)(u,x) · Iweight(x), (3)
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where weight(x) is the number of nonzero xi in x. If F is the indicator function
of (−1)f , this becomes

Nm(F )(u) =
1√
2m

∑

x∈Vm

(−1)f(x)+(u,x) · Iweight(x). (4)

A Boolean function f is called negabent if |Nm(F )(u)| = 1 for all u ∈ Vm.
In contrast to bent functions, negabent functions also exist if m is odd, see
Proposition 1, for instance. The difference to the case of bent functions is that
there are elements 1 ± I of absolute value

√
2 in Z[I], which is impossible in Z.

The set of values Hm(F )(u) (resp. Nm(F )(u)) is called the spectrum of F
with respect to Hm (resp. Nm).

Example 2. The function f(x) = x1x2 + x2x3 + x3x4 is bent and negabent, see
Theorem 4.

Like H, the nega-Hadamard transform is unitary: Since the polynomials ξx,
x ∈ Vm, form an orthonormal basis of L, it is sufficient to show that the poly-
nomials Nm(ξx) are orthonormal in L:

|(Nm(ξx), Nm(ξy))| =
1

2m

∣∣∣∣∣
∑

u∈Vm

(−1)(u,x)Iweight(x) · (−1)(u,y)(−I)weight(y)

∣∣∣∣∣

=

∣∣∣∣∣
1

2m

∑

u∈Vm

(−1)(u,x+y)Iweight(x)−weight(y)

∣∣∣∣∣

=
{

1 if x = y
0 otherwise.

Surprisingly, affine functions are negabent:

Proposition 1. All affine functions f : Vm → F2 are negabent.

Proof. If f(x) = (a,x) is linear, then the nega-Hadamard transform of the
indicator of (−1)f is

Nm((−1)f )(u) =
1√
2m

∑

x∈Vm

(−1)(u+a,x) · Iweight(x).

We define
α :=

1√
2m−1

∑

x∈Vm:x1=0

(−1)(u+a,x) · Iweight(x).

This is Nm−1((−1)g)(u′), u′ = (u2, . . . , um), for the linear function g on Vm−1

which is the restriction of f to {x ∈ Vm : x1 = 0}. By induction, we may assume
|α| = 1. Depending on u1 + a1, we get

Nm((−1)f )(u) =
1√
2
(α + α · I) or

1√
2
(α − α · I).
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Both numbers have absolute value 1. The induction follows by verifying that
N1((−1)g′

)(um), for the linear function g′ on V1, has magnitude 1, both for
g′ = 0 and g′ = xm. Since spectral magnitudes are invariant under addition
of the constant function f(x) = 1, then affine linear functions are negabent,
too. �

The next proposition will also be of interest:

Proposition 2. NmHmN−1
m = (2

√
2)mBm, where

Bm =
(

0 ω
ω 0

)
⊗ · · · otimes

(
0 ω
ω 0

)
,

and ω = 1√
2
(1 + I) is a primitive 8-th root of unity.

Proof. Note
(

1 I
1 −I

)
·
(

1 1
1 −1

)
·
(

1 1
−I I

)
=

(
0 2(1 + I)

2(1 − I) 0

)
= 2

√
2 ·

(
0 ω
ω 0

)

and “tensoring”. �

In this paper, we address the following problem:

Problem 1. Find Boolean functions f that are both bent and negabent.

The main results about these objects are the following:

– For all even m, there are examples of quadratic bent-negabent functions.
– Adding a certain polynomial, c, to a bent function gives a negabent function.

Adding the same polynomial, c, to a negabent function if m is even gives a
bent function.

– The dual of a bent-negabent function is again bent-negabent.
– We can characterize all Maiorana-McFarland bent functions which are bent-

negabent.
– We give examples of bent-negabent functions which are not quadratic.

At the end of this section, we would like to explain the connection between
the transforms Nm and Hm of F and correlation properties of f , where F is the
indicator polynomial of f : Vm → F2 in C[ξ1, . . . , ξm]. Note that the polynomial
ring C[ξ1, . . . , ξm] is an algebra by the usual multiplication · of polynomials,
which is equivalent to a convolution ∗ of the coefficients of the polynomials.

If x ∈ C
m, then obviously F (x) · F (x) = (F ∗ F )(x). Both the Hadamard and

nega-Hadamard transforms of F are nothing else than “evaluating F at certain
vectors”. Therefore, knowing the (nega-)Hadamard transform of F should give
some information about F ∗ F . We do not get full information about F ∗ F ,
but only modulo some ideals, as we will explain now: Let I− be the ideal in
C[ξ1, . . . , ξn] generated by ξ2

1 − 1, . . . , ξ2
m − 1, and I+ be the ideal generated

by ξ2
1 + 1, . . . , ξ2

m + 1. Let H (resp. N) be the unique polynomial in L with
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H ≡ (F ∗ F ) mod I− (resp. N ≡ (F ∗ F ′) mod I+, where F ′ is the polynomial
in L whose nega-Hadamard transform is the complex-conjugate of the nega-
Hadamard transform of F ).

Let y ∈ Vm. The coefficient cy of ξy in H is the periodic autocorrelation
coefficient

cy =
∑

x∈Vm

(−1)f(x)+f(x+y).

If f is bent, then H(x) = (F ∗ F )(x) = F (x) · F (x) = 2m for all x ∈ Vm.
Therefore, H is a polynomial such that all values in its spectrum are

√
2m (note

the normalization factor 1√
2m

). The only such polynomial is 2mξ0, hence cy = 0
if y �= 0, and c0 = 2m, where 0 = (0, 0, . . . , 0).

Similarly, the coefficients ny of F ∗ F ′ are all 0 (if y �= 0) provided f is
negabent. They are called the negaperiodic autocorrelation coefficients of f . If
F =

∑
x∈Vm

axξx then F ′ =
∑

x∈Vm
ax(−1)weight(x)ξx . Therefore, one may

compute these negaperiodic autocorrelation coefficients as follows:

ny =
∑

x∈Vm

(−1)f(x)+f(x+y) · (−1)weight(x+y) · (−1)(x,y).

We need the term (−1)(x,y) since our computations are modulo I+: The inner
product (x,y) counts the number of i ∈ {1, . . . , m} with xi = yi = 1, which is
the number of “reductions” modulo ξ2

i + 1. Every such reduction yields a “−1”
since ξ2

i = −1.
The coefficient of 0 in F ∗ F ′ (resp. F ∗ F ) is called the trivial autocorrelation

coefficient.
The following Theorem summarizes this discussion:

Theorem 2. A Boolean function is negabent if and only if all its nontrivial
negaperiodic autocorrelation coefficients are 0. It is bent, if and only if all the
nontrivial periodic autocorrelation coefficients are 0.

3 Quadratic Bent-Negabent Functions

We begin our investigation by determining quadratic bent-negabent functions.
Let M = (ai,j)i,j=1,...,m be a symmetric matrix in F

(m,m)
2 with zero diagonal.

Then M defines a quadratic function

p(x1, . . . , xn) =
∑

i<j

ai,jxixj . (5)

Conversely, any quadratic function (5) defines a symmetric matrix M. Note
that M may be viewed as the adjacency matrix of a graph with m vertices.
If this graph is a path graph or complete (clique) graph, then we also call the
corresponding quadratic function p a “path” or a “clique” function.
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The following result is well known:

Theorem 3. A quadratic function p is bent if and only if the corresponding
matrix M has full rank.

Similarly, one can characterize quadratic negabent functions. Actually, [2] con-
tains a much more general result.

Theorem 4 ([2]). A quadratic function p is negabent if and only if the ma-
trix M + I has full rank, where I is the identity matrix and M is the matrix
corresponding to p.

This theorem is the main ingredient to construct quadratic bent-negabent func-
tions. Using a recursive formula for the determinants of matrices of the type

L(v1, . . . , vm) :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

v1 1
1 v2 1

1 v3 1
. . . . . . . . .

1 vm−1 1
1 vm

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

∈ F
(m,m)
2 (6)

(“empty” entries are 0) contained in [2], it can be shown that

det(L(1, . . . , 1)) = 1

if and only if m �≡ 2 mod 3, and

det(L(0, . . . , 0)) = 1

if and only if m is even. Hence the quadratic function

p(x1, . . . , xm) = x1x2 + x2x3 + . . . + xm−1xm (7)

is a bent-negabent pair if m is even and m �≡ 2 mod 6. This result was also
conjectured in [1] and proved in [3]. Theorem 5 shows that the case m even,
m �≡ 2 mod 6 is not really exceptional. For proof, we need the following recursive
construction:

Lemma 1. Let A be a symmetric matrix in F
(m,m)
2 such that A and A+ I have

rank m. Then the matrix

A′ =

⎛

⎜⎜⎝

A
1

1
B

⎞

⎟⎟⎠ ∈ F
(m+6,m+6)
2

with
B = L(0, 0, 0, 0, 0, 0) ∈ F

(6,6)
2

(the matrix of the path graph, see (6)) has rank m + 6, and A′ + I has also rank
m + 6.
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Proof. Just do Gaussian elimination. �

Theorem 5. For all even m > 2, there exists a quadratic bent-negabent function
f : Vm → F2.

Proof. For m = 4, 6 and 8, we take the quadratic functions corresponding to
the matrices

⎛

⎜⎜⎝

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎠

and ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0 0 0 1
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
1 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
1 0 0 0 0 0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

These three quadratic forms are bent-negabent since the matrices as well as the
matrices plus I have full rank, see Theorems 3 and 4. Lemma 1 finishes the
proof. �

We will show that “adding a clique” c(x) =
∑

i<j xixj (see Theorem 12) turns a
bent function into a negabent function and vice versa. For quadratic functions,
this has the following interpretation:

Theorem 6. Let M be a symmetric matrix in F
(m,m)
2 , where the diagonal of

M is zero, and let J denote the matrix all of whose entries are 1. Then the
corresponding quadratic function is bent-negabent if and only if M and M+I+J
have full rank.

Proof. If f is bent, then rank(M) = m. If f is negabent, then f + c is bent.
The symmetric matrix that describes f + c is M + I + J, which must have full
rank. �

This shows that the classification of all quadratic bent-negabent functions is
equivalent to the determination of all simple graphs on m vertices such that the
adjacency matrix of the graph and its complement both have F2-rank m.

Problem 2. Determine the number of quadratic bent-negabent functions with m
variables.

The following Theorem may also serve as a basic ingredient to construct many
bent-negabent functions. Here 0 denotes the 0-matrix.
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Theorem 7. Let M ∈ F
(n,n)
2 be a symmetric matrix such that rank(M) =

rank(M + J) = n. Then both

M′ =
(

0 M
M J + I

)

and M′ + I have rank 2n. Therefore, the quadratic function f corresponding to
M′ is bent-negabent.

Proof. The matrix M′ has maximum rank since M has maximum rank. There-
fore, f is bent, see Theorem 3. If we add the (2n × 2n) matrix

(
I + J J

J I + J

)
.

to M′, we obtain

M′′ =
(

I + J M + J
M + J 0

)
.

Since we assume rank(M) = rank(M+J) = n, the rank of M′′ is 2n, which shows
that f is also negabent (see Theorem 6). �

An example for theorems 6 and 7 can be tested by taking M =
(

0100
1010
0101
0010

)
.

The following Theorem gives a huge family of matrices M of rank n such that
M + J has rank n, too. Unfortunately, n is even in this Theorem, hence we can
only construct bent-negabent functions in Vm with m ≡ 0 mod 4:

Theorem 8. Let n be even, and let M ∈ F
(n,n)
2 be a matrix where all rows and

columns have odd weight (in other words, MJ = JM = J). If M has maximum
rank, then M + J also has maximum rank.

Proof. Observe that (M + J)2 = M2 and, more generally, (M + J)2s = M2s,
(M+J)2s+1 = M2s+1+J. If M has even multiplicative order, then there exists s
such that M2s = (M+J)2s = I. Therefore, in this case M+J has maximum rank.
If M has odd multiplicative order, then there exists s such that M2s+1 = I, there-
fore (M+J)2s+1 = I+J. But (I+J)2 = I, since n is even. So, in this case, M+J
has maximum rank, too. �

4 Maiorana-McFarland Bent-Negabent Functions

In this section, we briefly recall the Maiorana-McFarland construction of bent
functions, and we characterize those functions which are both bent and negabent.

Let π : Vn → Vn be a permutation, and let g : Vn → F2 be an arbitrary
Boolean function. Then the function

fπ,g : Vm → F2

[x,y] 	→ (x, π(y)) + g(y) ,
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where m = 2n, is bent. Here [·, ·] denotes the concatenation of vectors, and (·, ·)
is the standard inner product.

We are free to choose g. If we take g(y) = y1 · · · yn, bent functions of degree
m/2 (written as a multivariate polynomial) do exist. It is well known that this is
the maximum degree. There exist bent-negabent functions of degree m/2 when
m = 6 (for instance, f(x,y) = x1y1y2 +x1y2y3 +x2y1y2 +x2y2y3 +x1y1 +x1y2 +
x2y3+x3y1+x3y3 is bent-negabent), but we do not know whether bent-negabent
functions of degree m/2 exist for all even m.

Problem 3. Find the maximum degree of bent-negabent functions.

All quadratic bent functions can be transformed by linear transformations to
Maiorana-McFarland bent functions. This is a simple consequence of the fact
that any quadratic function on Vm, m = 2n, of full rank can be transformed into
x′

1x
′
n+1 + x′

2x
′
n+2 + . . . + x′

nx′
2n by a linear transformation

(x1, . . . , x2n) → L(x1, . . . , x2n) = (x′
1, . . . , x

′
2n).

However, such linear transformations do not preserve the bent-negabent prop-
erty. For instance, x1x2 +x3x4 is bent, but not negabent, however x1x2 +x2x3 +
x3x4 is bent-negabent, see Theorem 7. These two quadratic functions are equiv-
alent via a linear coordinate transformation. Therefore, we cannot say that all
bent-negabent quadratic functions are “equivalent” to Maiorana-McFarland bent
functions.

The next theorem gives a characterization of Maiorana-McFarland bent-nega-
bent functions fπ,g in terms of the permutation π and the function g:

Theorem 9. Let {y1, . . . ,y2n} = Vn, where the vectors are numbered such that

Hn = ((−1)(yi,yj))i,j=1,...,n

is the matrix corresponding to the n-dimensional Hadamard-Walsh transform.
Then fπ,g is bent-negabent on Vm with m = 2n, if and only if all the entries in
the matrix

NnPDNt
n

have absolute value 1, where D and P are defined as follows:

– D is a diagonal matrix whose (i, i)-entry is (−1)g(yi).
– P is a permutation matrix where the 1-entry in row i occurs in column j

and π(yi) = yj.

Proof. We have
Nm((−1)f ) [u,v]

=
∑

[x,y]∈V2n

(−1)(x,π(y))+g(y)(−1)([u,v],[x,y])Iweight([x,y])

=
∑

y∈Vn

Iweight(y)(−1)g(y)(−1)(v,y)

(
∑

x∈Vn

(−1)(u,x)(−1)(x,π(y))Iweight(x)

)
.

This is an entry of NnHnPDNt
n. We have NnHn = BnNn, where Bn is a diag-

onal matrix with all diagonal entries of absolute value 1 (see Proposition 2)), the
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matrix NnHnPDNt
n has all entries of absolute value 1 iff NnPDNt

n has this
property. �

It seems difficult to apply Theorem 9 in order to construct Maiorana-McFar-
land bent-negabent functions.

We say that a quadratic function p is Maiorana-McFarland if we can split
the coordinates into two sets x1, . . . , xm/2 and x1+m/2, . . . , xm, say, such that no
term xixj with i ≤ m/2 and j > m/2 is contained in p. The following construc-
tion shows that quadratic bent-negabent functions of Maiorana-McFarland type
do exist:

Theorem 10. Let m = 4n, and let P and Q be permutation matrices of size n.
Then the matrix

M =

⎛

⎜⎜⎝

0 0 P 0
0 0 Q I
Pt Qt 0 0
0 I 0 0

⎞

⎟⎟⎠

describes a quadratic function p of Maiorana-McFarland type which is bent and
negabent.

Proof. Gaussian elimination both on M and M+I. �

Let p(x1, . . . , x4n) be the quadratic function in Theorem 10. Numerical experi-
ments indicate that we may always add a Boolean function g(x2n+1, . . . , x3n) to p
to obtain another bent-negabent pair. More generally still, experiments indicate
that p(x1, . . . , x4n) = (y, φ(z))+(θ(z),u)+(u,v)+g(z), where y = (x1, . . . , xn),
z = (xn+1, . . . , x2n), u = (x2n+1, . . . , x3n), v = (x3n+1, . . . , x4n), and where
φ, θ : Vn → Vn are both permutations, will always give examples of bent-
negabent pairs on m variables from degree 2 up to degree m/4.

5 Transformations Which Preserve Bent-Negabentness

Theorem 11. If f is a bent-negabent function, then its dual is again
bent-negabent.

Proof. An immediate consequence of Proposition 2. �

There are a few more transformations which produce new bent-negabent func-
tions from a given bent-negabent function.

Lemma 2. Let f : Vm → F2 be a bent-negabent function. Then

1. The Boolean function f ′(x) = f(x) + (
∑m

i=1 aixi) + b, where (a1, . . . , am) ∈
Vm, b ∈ F2, is bent-negabent.

2. The Boolean function f ′(x) = f(x1 + h1, x2 + h2, . . . , xm + hm) is bent-
negabent.
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3. If π denotes a permutation on the set of indices {1, ..., m}, then f(xπ(1), ...,
xπ(m)) is bent-negabent.

Proof. We just look at (1). This is well known and also easy to see for bent
functions f . The same reasoning shows that negabentness is preserved: Let l(x) =∑m

i=1 aixi + b, and let a = (a1, . . . , am). Then

Nm((−1)f ′
)(u)=

∑

x∈Vm

(−1)f(x)+(a,x)+bIweight(x)(−1)(u,x) =(−1)bNm((−1)f )(u+a).

�

The following more interesting construction is implicitly contained in Theorem
4.6 of [4].

Theorem 12. Let f : Vm → F2 be a bent function. Then f + c is negabent,
where c(x1, . . . , xn) =

∑
i<j xixj. Conversely, if m is even and f is negabent,

then f + c is bent.

Proof. Let f : Vm → F2 be a bent function. Then

Nm((−1)f+c)(u) =
∑

x∈Vm

(−1)f(x)+
∑

i<j xixj (−1)(u,x)Iweight(x)

=
∑

x∈Vm

(−1)f(x)(−1)(u,x)I2c(x)+weight(x),

where we compute the exponents on the right-hand side modulo 4. We note
∑

i

xi + 2
∑

i<j

xixj = (
∑

i

xi)2 in integers Z

where
∑

xi = weight(x). Moreover,

(
∑

i

xi)2 ≡
{

0 mod 4 if weight(x) is even
1 mod 4 if weight(x) is odd.

Let Em and Om denote the set of vectors of even weight and odd weight, respec-
tively. We define

xe =
∑

x∈Em

(−1)f(x)(−1)(u,x)

xo =
∑

x∈Om

(−1)f(x)(−1)(u,x).

Note that both these numbers are integers. We write Nm(f + c)(u) as follows:

Nm((−1)f+c)(u) = xe + Ixo

Now we use that f is bent, therefore

1 = |Hm((−1)f )(u)| = |xe + xo|
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and
1 = |Hm((−1)f )(u + j)| = |xe − xo|,

where j = (1, . . . , 1) is the all-one-vector. This is only possible if xe = 0 and
|xo| = 1, or vice versa. Therefore, |Nm((−1)f+c)(u)| = 1.

Now let us assume that a function g is negabent. We put f = g + c, hence,
by assumption,

|Nm((−1)f+c)(u)| = 1 = x2
e + x2

o.

Moreover, xe = ne/
√

2m, and xo = no/
√

2m for some integers ne and no. There-
fore, n2

e+n2
o = 2m. If m is even, one easily shows that this is possible only if one of

the two integers ne, no is ±2m/2, and the other is 0. Therefore, |Hm((−1)f )(u)| =
1, i.e. f = g+c is bent. �

Corollary 1. If f is a bent-negabent function, then f + c is also bent-negabent.

Remark 1. Assume that g is negabent, and m is odd. Then the proof above
shows that the Hadamard-Walsh coefficients of g + c are in {0, ±2(m+1)/2}, since
in this case the possible solutions of n2

e + n2
o = 2m are ne, no = ±2(m−1)/2.

Therefore, it is possible that n2
e + n2

o = 0.

6 Orbits of Bent-Negabent Functions

One can view the operations that preserve the bent-negabent property, as dis-
cussed in the previous section, as generators of a group, where the action of any
member of the group preserves the bent-negabent property. The two particularly
interesting symmetry operations, described in Theorem 11 and Corollary 1, are in-
volutary and, in combination with the symmetry operations of Lemma 2, generate
a group of symmetries, G, whose application on a single bent-negabent function
generates an orbit of bent-negabent functions. We also consider the more trivial
group, E , generated just by the symmetries of Lemma 2. In table 1 we enumer-
ate the number of orbits generated by the action of E and by G on the (homo-
geneous) quadratic Boolean functions for small numbers of variables. Note that,
for quadratics, symmetry 2 of Lemma 2 is contained in symmetry 1 and does not
contribute new functions to the orbit.

In a future paper we shall investigate and characterise these orbits in more
detail.

Table 1. Enumeration of bent-negabent quadratic coset leaders over n variables with
respect to the bent-negabent symmetry groups, E and G

n number of orbits generated by E number of orbits generated by G
2 0 0
4 1 1
6 10 2
8 1272 161
10 1727780 144861
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Abstract. Let n be a positive integer. A nonzero element γ of the finite
field F of order q = 2n is said to be “strongly primitive” if every element
(aγ +b)/(cγ +d), with a, b, c, d in {0, 1} and ad−bc not zero, is primitive
in the usual sense. We show that the number N of such strongly primitive
elements is asymptotic to θθ′ · q where θ is the product of (1 − 1/p) over
all primes p dividing (q − 1) and θ′ is the product of (1 − 2/p) over the
same set.

Using this result and the accompanying error estimates, with some
computer assistance for small n, we deduce the existence of such strongly
primitive elements for all n except n = 1, 4, 6. This extends earlier work
on Golomb’s conjecture concerning the simultaneous primitivity of γ
and γ + 1.

We also discuss analogous questions concerning strong primitivity for
other finite fields.

Keywords: finite field, primitive element, Golomb conjecture.

1 Introduction

Let F = F2n be a finite field of order 2n. The special linear group SL(2,F2) acts
on F \ {0, 1} by sending γ to (aγ + b)/(cγ + d) for (ad − bc) �= 0 with a, b, c, d
in F2 = {0, 1}. We say that γ in F is strongly primitive if γ and each of
its images under SL(2,F2) are primitive in the usual sense, i.e. each generates
the (cyclic) multiplicative group F∗. The main object of this paper is to prove
that such strongly primitive elements exist except in the cases n = 1, 4 and 6.
This involves an asymptotic formula for the number of such strongly primitive
elements, along with an error estimate, and some computer calculations to handle
small cases.

In 1984 Solomon W. Golomb [4], in the process of studying Costas arrays,
formulated a series of conjectures involving primitivity of elements in finite fields.
These have inspired much work by many authors ([3], [6], [7], etc.). Our results
can be considered as another chapter in this saga.

We also give some extensions and generalizations of our results, involving
other finite fields.
� To Sol Golomb on the occasion of his 75th birthday.

S.W. Golomb et al. (Eds.): SSC 2007, LNCS 4893, pp. 24–36, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2 First Main Result

Let q = 2n. We adopt the following notation:
W = W (q−1) = 2k where k is the number of distinct prime factors p of q−1;
θ = θ(q − 1) = φ(q − 1)/(q − 1) =

∏
p|q−1(1 − 1/p);

θ′ = θ′(q − 1) =
∏

p|q−1 (1 − 2/p)
Note that θ ·(2n−1) is precisely the number of primitive elements in F = F2n .

Also note that the image of γ under SL(2,F2) consists of the six elements
γ, 1/γ, γ + 1, 1/(γ + 1), (γ + 1)/γ, and γ/(γ + 1).

Theorem 2.1. Let N be the number of strongly primitive elements in the finite
field F2n . Then N is asymptotic to

θθ′ · 2n

as n → ∞.

Proof. The basic structure of this proof goes back (at least) to Carlitz [2]. First
note that the function u on F2n which has value 1 at all primitive elements and
vanishes elsewhere is given by

u(γ) = θ
∑

d|q−1

(μ(d)/φ(d))
∑

ord(f)=d

f(γ) ,

where the inner sum is over all multiplicative characters f of F which have exact
order d. Since primitivity is preserved by inversion, we need only evaluate this
function u at γ, γ + 1 and (γ + 1)/γ, multiply these evaluations together, and
sum over γ to evaluate N . Hence we have

N =
∑

γ

u(γ)u(γ + 1)u((γ + 1)/γ)

= θ3
∑

d1|q−1,
d2|q−1,
d3|q−1

μ(d1)μ(d2)μ(d3)
φ(d1)φ(d2)φ(d3)

∑

ord(f)=d1,
ord(g)=d2,
ord(h)=d3

∑

γ

f(γ)g(γ + 1)h
(

γ + 1
γ

)
.

We can rewrite the inner summand as (f/h)(γ)(gh)(γ + 1). Hence the inner
sum is equal to K(f/h, gh) where K(s, t) =

∑
γ s(γ)t(γ + 1) is the standard

Jacobi sum. It is clear that K(s, s) = q − 2 if s is the trivial character, and that
K(s, t) = −1 if exactly one of s, t is the trivial character. Also K(s, t) = −1 if
st is trivial but neither s nor t is trivial. Otherwise, if none of s, t, st are trivial,
it is known [5, Chapter 5, Sect. 3] that K(s, t) has absolute value

√
q. Hence,

unless s and t are both trivial, we have |K(s, t)| ≤ √
q.

Consider our (rewritten) expression for N . It is θ3 times a huge sum, where
each term in the sum is a coefficient times a value of K(f/h, gh). First note that
the sum of the absolute values of ALL the coefficients is W 3. For any particular
d1, for instance, there are φ(d1) choices of f with exact order d1, so the φ(d1)
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in the denominator is canceled out, etc. Hence the sum in question is just the
total number of triples d1, d2, d3 of square-free numbers dividing q − 1. This is
just W 3.

The main term comes from the set A of those (f, g, h) triples where f = h =
g−1. For terms in A the characters s = f/h and t = gh are both trivial, so the
value of K is q − 2. For terms in A we must have d1 = d2 = d3 and so the
coefficient sum is ∑

d1|(q−1)

μ(d1)/φ(d1)2 .

The sum can be rewritten as a product
∏

p|q−1(1 − 1
(p−1)2 ), which evaluates to

θ′/θ2. Therefore, the main term is equal to θ3( θ′

θ2 )(q − 2), or

θθ′ · (q − 2) .

The set B is the complement of A. B consists of those triples (f, g, h) where
f/h and fg are not both trivial. On B, the absolute value of K is bounded by√

q. To get the error term we sum
∑

B K. Therefore, since the total number of
terms in the sum B is W 3 − W , the error term E is bounded in absolute value
by

|E| ≤ θ3 · (W 3 − W )
√

q .

Putting all this together we obtain

|N − θθ′ · q| ≤ (θW )3
√

q . (2.2)

Since W is O(qε) for any positive ε, and since

1/2 ≤ θ′/θ2 ≤ 1 , (2.3)

we see (rearranging somewhat) that N is asymptotic to θθ′ · q as q tends to
infinity. ��
Corollary 2.4. Strongly primitive elements exist in F2n unless n = 1, 4, or 6.

Proof. We keep track of the error term E above more precisely. We have from
(2.2) that N ≥ θθ′ · q − (θW )3

√
q, and so by (2.3) the inequality q > 4W 6 would

be enough to guarantee that N is positive. But this always holds for n > 228, by
Lemma 2.5, and a computer calculation shows that N is positive for all n ≤ 228
except n = 1, 4, and 6. ��
Lemma 2.5. Let 2k be the number of square-free factors of q = 2n − 1. If
n > 288 then q > 26k+2.

Proof. If k ≤ 47, then 26k+2 < q simply because 6 · 47 + 2 < 288.

We note that (a) the product of the smallest 47 odd primes is > 4 · 6447 and
that (b) the 48’th odd prime is ≥ 64. Suppose k > 47. Then 4 · 64k < q by (a)
and (b). ��
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3 Extensions

Consider now a nested pair of finite fields E ⊆ F, which henceforth are of
arbitrary characteristic. Then the special linear group SL(2,E) acts on F \E as
before, but we cannot expect all images of γ ∈ F to be primitive. If, for instance,
|F∗| is even (odd characteristic), then the quotient of two primitive elements
cannot be primitive. So we must change the questions we ask. One possibility is
to work with the full special linear group SL(2,E) acting on F \ E, and modify
our definitions as in Sects. 5 and 7.

Another possibility is to consider the action of a proper subgroup of SL(2,E)
such as the unipotent group of all translations γ → γ + c for c ∈ E. This is (a
special case of a much more general set-up) investigated by Carlitz [2] in 1956.
A straightforward application of the Jacobi sum technique yields:

Theorem 3.1 (Carlitz). Suppose E ⊆ F are finite fields with |F| = q. Let
N(E,F) be the number of elements γ in F such that γ + c is primitive for all c
in E. Then for each E, N(E,F) is asymptotic to

θ|E| · q

as q → ∞, where θ = θ(q − 1).

Hence, for large q, such γ must always exist. Here are two data points in this
connection.

Proposition 3.2. Suppose F is a quadratic extension of the finite field E. Then
there exists γ in F such that each γ + c, c in E, is primitive, if and only if E
has order 2 or 4.

The proof of this proposition appears in Sect. 4.

Conjecture 3.3. Let E be a finite field of characteristic p. Then there exists
a ∈ E such that the polynomial xp−x−a is primitive (i.e. a root of xp−x−a = 0
is primitive in the degree-p extension of E).

We have confirmed this by computer for all fields E with |E| ≤ 101. The con-
jecture, if true, would imply that for any field F of order pp, there is a primitive
γ ∈ F such that γ + 1, . . . , γ + p − 1 are all also primitive.

4 Proof of the Proposition

In this section we prove Proposition 3.2.

Lemma 4.1. Let C be a smooth projective genus-one curve defined over a finite
field F. Then the number |C(F)| of F-rational points of C is at least (

√|F|−1)2.
If |F| ≥ 8, then |C(F)| > 3.

Proof. The bound on the number of rational points is due to Siegel. The second
statement follows since (

√
8 − 1)2 > 3. ��
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Proof of Proposition 3.2. Set k = |E|. If k = 2, then ω and ω + 1 are primitive,
for ω a root of x2 + x + 1 = 0. If k = 4, then all translates γ + c, c ∈ E are
primitive, for γ a root of x2 + x + ω = 0. Suppose that k is odd. Then, after
completing the square, we find β = γ + c whose square lies in E, for some c ∈ E.
Then β2(k−1) = 1. As 2(k − 1) < k2 − 1 (since 2 < k + 1), we see that β is not
primitive.

Finally, suppose that k ≥ 8 is not a power of 3. Since 3 | k2 − 1, an element
of F∗ that is equal to a cube y3 is not primitive. There is no loss in supposing
that γ does not lie in E. Let

x2 − tx + n = 0

be the minimal polynomial for γ over E. Let Sγ denote the set {γ + c | c ∈ E}
of translates of γ by elements of the smaller field E. Let M be the number of
y ∈ F whose cube y3 lies in Sγ . Since any such y is uniquely written u + γv for
u, v ∈ E, we find, after multiplying out (u + γv)3 and setting the coefficient of γ
equal to one, that M is the number of u, v ∈ E that satisfy:

1 = 3u2v + 3tuv2 + (t2 − n)v3 .

Let C ⊆ P2 be the homogenized curve:

C : z3 = 3u2v + 3tuv2 + (t2 − n)v3 .

Then C is smooth of genus-1. (By a direct calculation, its discriminant is

Δ = −39(t2 − 4n)2 ,

which is clearly nonzero.) By Lemma 4.1, C has at least four E-rational points.
Since setting z = 0 gives a cubic equation in u and v, there are at most 3 points
on C “at infinity”, and so M > 0. It follows that some γ + c is a cube, hence
not primitive, as was to be shown. ��
We thank Everett Howe for some assistance with genus-1 curves.

5 Relatively Strongly Primitive Elements

Definition 5.1. An element γ in F ⊇ E is relatively primitive if the (image
of) γ generates the quotient group F∗/E∗. An element γ is relatively strongly
primitive (RSP) if every image of γ under SL(2,E) is relatively primitive.

Clearly RSP and strongly primitive coincide if |E| = 2.
The following generalizes our earlier theorem.

Theorem 5.2. Suppose E ⊆ F are finite fields, |E| = k, |F| = q, and the
quotient (q − 1)/(k − 1) is relatively prime to k!. Let N(E,F) be the number of
RSP elements in F. Then, for each E, N(E,F) is asymptotic to

(θ1θ2 · · · θk) · q
as q → ∞, where θi = θi( q−1

k−1 ) =
∏

p| q−1
k−1

(1 − i/p).
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Note that the condition ((q−1)/(k−1), k!) = 1 is necessary and sufficient for no
θi to vanish, and also necessary for any RSP elements to exist. Also note that,
when k = 2, θ1 coincides with our earlier θ and θ2 coincides with θ′.

Lemma 5.3. Let k ≥ 0 be an integer. The number of tuples (γ0, . . . , γk) in
(F∗)k+1 such that each ratio γi/γj is primitive (0 ≤ i < j ≤ k) is equal to
(q − 1)k+1θ1θ1 · · · θk.

Proof. Let ζ be a primitive element of F∗. Then there are integers ei such that
γi = ζei . A necessary and sufficient condition that each ratio γi/γj is primitive
for 0 ≤ i < j ≤ k is that the e0, . . . , ek be distinct mod p for each prime divisor
p of q − 1.

The case k = 0 has already been noted. Supposing the lemma true for k, we
prove it for k + 1. Let p | q − 1, and suppose the integers e0, . . . , ek are distinct
modulo p. Then there are (p − k − 1) possibilities for ek+1 modulo p. Since
this reasoning holds for each p | q − 1, the number of possibilities for ek+1 is
(q − 1)

∏
p|q−1(1 − k+1

p ) by the Chinese remainder theorem. ��

The proof of Theorem 5.2 (Sect. 11) involves standard inequalities for character
sums (Sect. 10) as well as a combinatorial identity (Sect. 8) which we prove using
the flow and chromatic polynomials of graph theory (Sect. 9).

6 A Second Generalization

Let q > 1 be a prime power. Let F denote a field of q elements. Let k ≥ 0 be an
integer, and let f0, . . . , fk ∈ F[x] be nonzero polynomials.

We assume:

(*) The polynomials f0, . . . , fk are square-free and relatively prime in
pairs. At most one of the fi is constant.

For example, (*) is satisfied by the collection {1} ∪ {x + c | c ∈ E} for E a
subfield of F of cardinality k.

Note that Carlitz proved Theorem 3.1 in the more general context of a set of
nonconstant polynomials satisfying (*).

We set some more notation. Let N = N(q; f0, . . . , fk) be the number of γ ∈ F
such that each fi(γ)/fj(γ) is primitive, 0 ≤ i < j ≤ k. Such a γ is not a root of
h(x) = f0(x)f1(x) · · · fk(x). Let r (resp. R) be the number of roots of h(x) in F
(resp. in an algebraic closure of F).

Let g be the greatest common divisor of q − 1 and k!. In Sect. 2, we defined
W to be the number of square-free factors of q − 1. Let θi = θi(q − 1).

If g > 1, then N = 0 and θ1 · · · θk = 0, where θi = θi(q − 1). The first
statement holds by the previous lemma. The second statement holds since the
gcd condition implies that there is a prime 
 < k that divides q − 1, hence
θ� =

∏
p|(q−1)(1 − �

p ) = 0.
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Theorem 6.1. Let f0(x), . . . , fk(x) be a collection of polynomials satisfying (*).

1. If g > 1 then θ1θ2 · · · θk = N = 0.
2. |N − (q − r)θ1 · · · θk| ≤ (θW )k(k+1)/2(R − 1)

√
q.

3. We vary the field. Assume g = 1, and let Nn = N(qn; f0, · · · , fk). Then the
ratio

Nn

θ1 · · · θkqn
→ 1

as n → ∞ through a sequence of integers so that (qn − 1, k!) = 1, and where
θi = θi(qn − 1).

The theorem as stated is of limited applicability. Because of the gcd condition,
only fields of characteristic 2 are allowed, and even then, the gcd condition is
quite restrictive. However, in Sect. 7 we state a relative version of Theorem 6.1
which applies to many more fields (at the price of only having a “relative”
conclusion).

We note that the assumption (*) can be replaced by much weaker conditions.
For example, it is enough that there exist irreducible polynomials πi, 1 ≤ i ≤ k
in F[x] such that πi(x) | fj(x) for 0 ≤ j ≤ k if and only if i = j, and π2

i (x) does
not divide fi(x). This condition can be weakened even further:

(**) For all primes p not dividing q, if the integers e0, . . . , ek satisfy
e1 + · · · + ek ≡ 0 (mod p), c ∈ F∗, and if

f0(x)e0f1(x)e1 . . . fk(x)ek = cg(x)p

is a nonzero constant multiple of a pth power of a polynomial g(x) ∈ F[x],
then each e0, . . . , ek is divisible by p.

7 A Relative Version

We reformulate Theorem 6.1 in a “relative” way. Theorem 7.2 simultaneously
generalizes Theorems 2.1, 5.2, and 6.1.

Definition 7.1. Let μ be a subgroup of F∗. Set m = |μ|. An element γ in F
is relatively primitive with respect to μ if the (image of) γ generates the
quotient group F∗/μ.

Let N = N(q; f0, . . . , fk; μ) denote the number of γ ∈ F such that fi(γ) �= 0
for all 0 ≤ i ≤ k and fi(γ)/fj(γ) is relatively primitive with respect to μ for all
0 ≤ i < j ≤ k.

Let g be the greatest common divisor of (q − 1)/m = |F∗/μ| and k!. Let
θi = θi((q − 1)/m) =

∏
p| q−1

m
(1 − i/p).

Theorem 7.2. Let q > 1 be a prime power, F a field of cardinality q. Let the
polynomials f0, · · · , fk ∈ F[x] satisfy (*) or (**).
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1. If g > 1 then θ1θ2 · · · θk = N = 0.
2. |N − (q − r)θ1 · · · θk| ≤ (θW )k(k+1)/2(R − 1)

√
q.

3. We vary the field. Let μ be a subgroup of F∗, Nn = N(qn; f0, · · · , fk; μ). The
ratio

Nn

θ1 · · · θkqn
→ 1

as n → ∞, through a sequence of values such that ((qn−1)/m, k!) = 1, where
now θi = θi( qn−1

m ).

8 A Key Formula

We state a combinatorial formula that is the key to proving Theorem 7.2.
Let k ≥ 1 be an integer and p a prime. We define a system of k + 1 linear

equations in k(k + 1)/2 unknowns yi,j , 0 ≤ i < j ≤ k over the field Z/pZ. For
each 0 ≤ i0 ≤ k, we have the equation (Ei0) :

(Ei0) :
∑

i0<j≤k

yi0,j =
∑

0≤j<i0

yj,i0 .

Let Y be the set of simultaneous solutions to (E0), (E1), . . . , (Ek). For each
y = (yi,j) ∈ Y , let z(y) denote the number of i, j pairs such that yi,j = 0.

We have the following key formula:

1
(−p)k(k+1)/2

∑

y∈Y

(1 − p)z(y) = (1 − 1
p
)(1 − 2

p
) · · · (1 − k

p
) , (8.1)

whose proof will be postponed to the next section.

9 Some Graph Theory

We state and prove a result on polynomial invariants of graphs. Our sole purpose
is to give a proof of (8.1). The reader who is willing to take that formula on faith
(or who has an alternative proof) can skip this section.

Let G = (E, V ) be a graph. Choose an arbitrary orientation to each edge in
E. A labeling of the edges of G with elements of the finite abelian group H is a
flow if the divergence (the out-flow minus the in-flow) at each vertex is equal
to 0.

The number of H-flows on G is independent of the orientation put on G, and
is therefore a function of G and H alone. As Tutte showed [8, pp. 55–69], this
number is the same for all abelian groups H of the same order n. Without loss
of generality, we restrict our attention to Z/nZ, the additive group of integers
mod n.

For A ⊆ E a set of edges, let f̃l(A, n) denote the number of flows with values
in Z/nZ that are supported on A.
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It is clear that f̃l(A, n) is a power of n, namely,

f̃l(A, n) = n|A|−ρ(A) , (9.1)

where the rank of A, ρ(A), is the number of edges in a maximal acyclic subset
of A. For A ⊆ E a subset of edges, the flow number fl(A, n) is the number of
Z/nZ-flows on G with support precisely equal to A.

We change gears somewhat and write fl(A, λ), where λ is a variable, to indicate
that this is a polynomial (rather than a function of a nonnegative integer n).

The flow polynomial satisfies the recurrence:

fl(A, λ) =
∑

B⊆A

(−1)|A|−|B|f̃ l(B, λ) . (9.2)

The chromatic number chrom(G; n) is the number of ways of assigning n
colors to the vertices of G so that no two adjacent vertices have the same color.

The chromatic polynomial satisfies the recurrence:

chrom(G; λ) =
∑

A⊆E

(−1)|A|λ|V |−ρ(A) . (9.3)

Equations (9.2) and (9.3) are each proved by a straightforward inclusion-
exclusion argument that we omit. They imply that the flow and chromatic poly-
nomials really are polynomials. (Alternatively, this follows from the fact that
the flow and chromatic polynomials are specializations of the two-variable Tutte
polynomial, see [1, Proof of Theorem 14.1 and Exercise 14e]).

Lemma 9.4. Let G = (V, E) be a graph. Then

(−1)|E| ∑

A⊆E

(1 − λ)|E|−|A|fl(A, λ) = λ|E|−|V | chrom(G; λ) .

Proof. The left hand side of the formula is equal to

= (−1)|E| ∑

A⊆E

(1 − λ)|E|−|A| ∑

B⊆A

(−1)|A|−|B| f̃ l(B, λ) (by (9.2))

= (−1)|E| ∑

B⊆E

(−λ)|E|−|B|f̃ l(B, λ) (by the binomial theorem)

=
∑

B⊆E

(−1)|B|λ|E|−ρ(B) (by (9.1))

= λ|E|−|V | chrom(G; λ).

��
We now show how the key formula follows from the lemma. The complete graph
Kk+1 = (V, E) on k + 1 vertices has |E| = k(k + 1)/2 and |V | = k + 1. The
chromatic polynomial of Kk+1 is easily seen to be

chrom(G, λ) = λ(λ − 1) · · · (λ − k) .
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Setting λ = p, in Lemma 9.4, we have:

(−1/p)k(k+1)/2
∑

A⊆E

(1 − p)|E|−|A|fl(A, p) = p−k−1p(p − 1) · · · (p − k) .

Using the definition of fl(A, p) and rearranging somewhat yields (8.1), the
exact form that will be used in Sect. 11.

10 Character Sums

In this section we state (but do not prove) the character sum bound needed for
Theorem 7.2. Let f(x) be a polynomial in F[x], ψ a multiplicative character of
F∗ taking complex values, m the order of ψ. As a particular case of a result of
Weil [9], the character sum ∑

γ∈F

ψ(f(γ))

can be nicely bounded in terms of R, the number of distinct roots of f in an
algebraic closure, provided f(x) is not (up to nonzero scalar multiple) an m’th
power.

Lemma 10.1. ([5, Theorem 5.41]) Let F be a finite field of q elements, ψ a
multiplicative character of F∗ of order m > 1, f ∈ F[x] a nonconstant polynomial
such that f(x)/c is not the m’th power of a polynomial, where c is the leading
coefficient of f(x). Then

∣∣∣∣∣∣

∑

γ∈F

ψ(f(γ))

∣∣∣∣∣∣
≤ (R − 1)

√
q .

Note that the inequality for Jacobi sums used above, namely, |K(s, t)| ≤ √
q

if s or t is nonidentity, follows from Lemma 10.1 where f(x) = xa(x + 1)b, ψ
primitive, and R = 2.

11 Proof of the Theorem

We have q > 1 a prime power, F a field of q elements, f0(x), . . . , fk(x) ∈ F[x]
satisfying either (*) or the weaker condition (**). Let N = N(q; f0, · · · , fk) be
the number of γ ∈ F such that each ratio fi(γ)/fj(γ) is primitive for 0 ≤ i <
j ≤ k.

We have

N =
∑

γ

∏

0≤i<j≤k

u

(
fi(γ)
fj(γ)

)
,

the sum being over those γ ∈ F that are not roots of f0(x) · · · fk(x). This con-
sideration excludes r values from the sum, where r is the number of roots in F
of f0(x) · · · fk(x).
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Let di,j be a divisor of q − 1, χi,j a character of F∗ of exact order di,j for all
pairs 0 ≤ i < j ≤ k. In view of the definition of u, we have

N = θk(k+1)/2
∑

γ

∑

di,j |(q−1)

⎛

⎝

⎛

⎝
∏

0≤i<j<k

μ(di,j)
φ(di,j)

⎞

⎠
∑

ord χi,j=di,j

∏

0≤i<j<k

χi,j

(
fi(γ)
fj(γ)

)⎞

⎠ .

We are free to interchange the order of summation, to get

N = θk(k+1)/2
∑

di,j |(q−1)

(∏ μ(di,j)
φ(di,j)

) ∑

ord χi,j=di,j

∑

γ

∏

i<j

χi,j

(
fi(γ)
fj(γ)

)
.

The inner sum (over γ) can be rewritten as

∑

γ

∏

i0

⎛

⎝
∏

i0<j≤k

χi0,j(fi0(γ))

/
∏

0≤j<i0

χj,i0(fi0(γ))

⎞

⎠ .

As before, we estimate N with a main term and an error term. The main term
is summed over the set A consisting of those collections of characters (χi,j : 0 ≤
i < j ≤ k) such that, for each 0 ≤ i0 ≤ k, we have

(∗ ∗ ∗)
∏

i0<j≤k

χi0,j =
∏

0≤j<i0

χj,i0 .

For each collection of characters in the main term A, the innermost sum is
equal to q − r (compare with q − 2 in Sect. 2).

Hence, the main term is (q − r)M , where

M = θk(k+1)/2
∑

di,j |(q−1)

(∏ μ(di,j)
φ(di,j)

) ∑

ord χi,j=di,j ,
(∗∗∗)

1 ,

where the innermost sum is over those characters of the stated order that also
satisfy the equations (***).

It is not hard to see that M is a product of local factors

M =
∏

p|(q−1)

Mp ,

where Mp is (1 − 1
p )k(k+1)/2 times the sum above restricted to those collections

of divisors (di,j : 0 ≤ i < j ≤ k), with each di,j = 1 or p. For such a collection,
we see that ∏

0≤i<j≤k

μ(di,j)
φ(di,j)

is equal to (1 − p)− nz(d), where nz(d) is the number of di,j that are not equal
to 1. We get

Mp = (
p − 1

p
)k(k+1)/2

∑

di,j |p
(1 − p)− nz(d)

∑

ord χi,j=di,j ,
(∗∗∗)

1 .
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Combining powers of (1 − p) gives:

Mp =
1

(−p)k(k+1)/2

∑

di,j |p
(1 − p)z(d)

∑

ord χi,j=di,j ,
(∗∗∗)

1 , (11.1)

where z(d) = k(k + 1)/2− nz(d) is the number of di,j that are equal to 1. Then:

Mp =
1

(−p)k(k+1)/2

∑

ord χi,j |p
(1 − p)z(χ) , (11.2)

where z(χ) is the number of 0 ≤ i < j ≤ k such that χi,j = 1.
We identify the cyclic multiplicative group of pth roots of unity in F with the

additive cyclic group Z/pZ of order p. Choose a primitive pth root of unity ζ
and define yi,j by the formula

χi,j = ζyi,j .

Then the yi,j satisfy (E0), . . . , (Ek) since the χi,j satisfy (***), so that the sum
(11.2) is equal to (8.1). We thus get for the main term:

Mp = (1 − 1
p
)(1 − 2

p
) · · · (1 − k

p
), and (11.3)

(q − r)M = (q − r)θ1θ2 · · · θk, (11.4)

and we turn now to the error term.
The error term E is obtained by summing those terms where the character

is not trivial. Let ζ be a primitive character of F∗. Then any character χi,j is
equal to ζei,j for some integer ei,j . View the ei,j as a labeling on the edges of
the complete graph Kk+1. Finally, let the integer Di(0 ≤ i < k) denote the
divergence at vertex i corresponding to the labeling of the (directed) edges of
Kk+1 with the labels ei,j(0 ≤ i < j ≤ k).

We obtain:

E = θk(k+1)/2
∑

di,j

∏

0≤i<j≤k

μ(di,j)
φ(di,j)

∑

ord χi,j=di,j ,
not (∗∗∗)

∑

γ

ζ
(
f0(γ)D0 · · · fk(γ)Dk

)
.

We are free to modify the inner rational function by multiplying by an appropri-
ate power of (f0(x) · · · fk(x))q−1. This does not change the value of the rational
function. Call the resulting polynomial f(x). By condition (**) (or, by condition
(*), which implies (**)), we see that f(x) is not a nonzero scalar multiple of an
mth power of a polynomial, m > 1, so that Lemma 10.1 applies. Therefore, the
inner sum is at most (R − 1)

√
q in absolute value. Since the number of terms

is at most W k(k+1)/2 and each coefficient has absolute value 1, we get an error
term of

|E| ≤ (θW )k(k+1)/2(R − 1)
√

q . (11.5)
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Theorem 6.1 follows from (11.4) and (11.5).
The proof of the “relative” version (Theorem 7.2) is exactly the same, except

that the main term is now a product over those primes p dividing (q − 1)/m
(rather than all primes dividing q − 1).
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Abstract. The perfect binary sequence of period 4 − ‘0111’ (or cyclic
shifts of itself or its complement) − has the optimal periodic autocorre-
lation function where all out-of-phase values are zero. Not surprisingly,
it is also the Barker sequence of length 4 where all out-of-phase aperiodic
autocorrelation values have the magnitudes of at most one. From these
observations, the applications of the sequence for low periodic and aperi-
odic autocorrelations are studied. First, the perfect sequence is discussed
for binary sequences with optimal periodic autocorrelation. New binary
sequences of period N = 4(2m − 1), m = 2k with optimal periodic auto-
correlation are presented, which are obtained by a slight modification of
product sequences of binary m-sequences and the perfect sequence. Then,
it is observed that a product sequence of the Legendre and the perfect
sequences has not only the optimal periodic but also the good aperiodic
autocorrelations with the asymptotic merit factor 6. Moreover, if the
product sequences replace Legendre sequences in Borwein, Choi, Jedwab
(BCJ) sequences, or equivalently Kristiansen-Parker sequences (simply
BCJ-KP sequences), numerical results show that the resulting sequences
have the same asymptotic merit factor as the BCJ-KP sequences.

Keywords: Binary sequences, Merit factors, Perfect sequence, Periodic
and aperiodic autocorrelations.

1 Introduction

In code-division multiple access (CDMA) [1] [2], wireless local area network
(WLAN) [3], and ultra-wideband radio (UWB) [28], binary pseudorandom se-
quences with good autocorrelation functions play important roles for desired
power spectrums, synchronizations, etc.

Conventional autocorrelation functions have two different definitions − peri-
odic and aperiodic autocorrelations. Traditionally, the periodic autocorrelation
of a binary sequence has received more attention in literatures for sequence fam-
ilies of CDMA communication systems. However, the aperiodic autocorrelation
is considered to better characterize a binary sequence for more realistic commu-
nication systems. For further discussions of the autocorrelation functions and
their applications, see [25].
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The perfect binary sequence of period 4 is a uniquely known binary sequence
where all out-of-phase periodic autocorrelation values are zero. Not surprisingly,
it is also the Barker sequence of length 4 where all out-of-phase aperiodic auto-
correlation values have the magnitudes of at most 1. From these observations,
we consider the perfect sequence is optimal in terms of both periodic and ape-
riodic autocorrelations, and believe the sequence can be effectively utilized for
constructing binary sequences with low periodic or aperiodic autocorrelations.

In this paper, we study the applications of the perfect binary sequence for
both definitions of autocorrelation functions. A basic approach for the appli-
cations is a product method described in [19]. First, we consider the usage of
the perfect sequence in the product sequences which have optimal periodic au-
tocorrelation. Then, we present new binary sequences with optimal periodic
autocorrelation magnitudes by slightly modifying product sequences of binary
m-sequences and the perfect sequence. In terms of aperiodic autocorrelation,
on the other hand, numerical results show that product sequences of Legendre
sequence with the perfect sequence preserve the asymptotic merit factor 6. More-
over, it is also observed if the product sequences replace Legendre or modified
Jacobi sequences in Borwein, Choi, Jedwab (BCJ) sequences [8], or equivalently
Kristiansen-Parker sequences [17] [18] (simply BCJ-KP sequences), the resulting
sequences have the same asymptotic merit factor 6.34 as the BCJ-KP sequences,
which is known to be the highest value for binary sequences generated by a con-
structive way [8] [17] [18].

From theoretical proofs and the numerical evidences, we conclude that the
perfect binary sequence is very useful for obtaining new sequences with low
periodic and aperiodic autocorrelations.

2 Binary Sequences with Low Autocorrelation

2.1 Binary Sequences with Low Periodic Autocorrelation

The periodic autocorrelation of a binary sequence a = {ai} of period N is defined
by

Ca(τ) =
N−1∑

i=0

(−1)ai+ai+τ , 0 ≤ τ ≤ N − 1

where the indices are computed modulo N . For a sequence a of period N , it
is implied that Ca(τ) = N occurs only at τ ≡ 0 (mod N). Ca(τ) is called
optimal [4] if it satisfies

1) Ca(τ) ∈ {N, −1} if N ≡ 3 (mod 4), or
2) Ca(τ) ∈ {N, 1, −3} if N ≡ 1 (mod 4), or
3) Ca(τ) ∈ {N, 2, −2} if N ≡ 2 (mod 4), or
4) Ca(τ) ∈ {N, 0, −4} or {N, 0, 4} if N ≡ 0 (mod 4)

for all τ ’s. For complete classes of known binary sequences with optimal periodic
autocorrelation, see [9] and [31].
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2.2 Binary Sequences with Good Aperiodic Autocorrelation

The aperiodic autocorrelation of a binary sequence a = {ai} of length N is
defined by

Aa(τ) =
N−τ−1∑

i=0

(−1)ai+ai+τ , 0 ≤ τ ≤ N − 1.

In the design of binary sequences, the low aperiodic autocorrelation is known
to be much more difficult to achieve than the low periodic autocorrelation [15].
In general, Barker sequences [5] have the best known aperiodic autocorrelation
functions where all out-of-phase values have the magnitudes of at most 1. Due
to the strict condition, however, there exist only a few Barker sequences of small
lengths − N = 2, 3, 4, 5, 7, 11, and 13. Furthermore, it is shown that there are
no further Barker sequences of odd lengths [29].

As a mild and alternative measure of aperiodic autocorrelation, the merit
factor [10] of a binary sequence a of length N is defined by

FN (a) =
N2

2
∑N−1

τ=1 [Aa(τ)]2
.

The merit factor measures how collectively small the aperiodic autocorrelation
is. Also, it is a measure of the spectral uniformity of the sequence [7], which is
of interest in digital communications. Let F (a) = limN→∞ FN (a) be the asymp-
totic merit factor of a binary sequence a as its length goes to infinity. Then, a
major design issue on the merit factor is to find binary sequences of length N
with high asymptotic merit factors. The best known and theoretically proven
asymptotic merit factor of binary sequences generated by constructive ways is 6.
For more details of the binary sequences with high merit factors, see [15], [23],
and [31].

2.3 The Perfect Sequence

Let a be a binary sequence of period N . If its periodic autocorrelation Ca(τ) is
equal to 0 for all τ �≡ 0 (mod N), i.e.,

Ca(τ) =
{

0, if τ �≡ 0 mod N
N, if τ ≡ 0 mod N,

then a is called the perfect sequence. The only known perfect binary sequence
is a = (0, 1, 1, 1) or its complement [6]. For a period of 4 < N < 108900, no
perfect binary sequences are found [27], and it is conjectured in [16] that no
other perfect binary sequences exist except for N = 4.

It is easy to see that any out-of-phase aperiodic autocorrelation value of the
perfect binary sequence is 1, 0, or −1. Therefore, the perfect sequence is a Barker
sequence as well. From this point of view, we consider the sequence is optimal
not only in periodic but also in aperiodic autocorrelations.
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3 The Perfect Sequence for Binary Sequences with
Optimal Periodic Autocorrelation

In this section, we discuss the applications of the perfect binary sequence for
binary sequences with optimal periodic autocorrelation. First, the product [19]
sequences are described as the application example. Then, binary sequences of
period N = 4(2m − 1), m = 2k with optimal periodic autocorrelation magni-
tudes [30] are described by the slight modification of a product sequence.

3.1 Product Sequences

Let a and b be binary sequences of periods N1 and N2, respectively, where
gcd(N1, N2) = 1. Then the product sequence [19] p = a+b = (p0, p1, · · · , pN−1)
of period N = N1N2 is defined by the component-wise addition of pi = ai + bi

(mod 2), 0 ≤ i ≤ N − 1. Periodic autocorrelation of the product sequence is
given by

Cp(τ) =
N−1∑

i=0

(−1)pi+τ+pi =

[
N1−1∑

i1=0

(−1)ai1+τ+ai1

]
·
[

N2−1∑

i2=0

(−1)bi2+τ+bi2

]

= Ca(τ) · Cb(τ), 0 ≤ τ ≤ N − 1

(1)

where the indices of a sequence are computed modulo its own period. From (1),
we could obtain binary product sequences with optimal periodic autocorrelation
using the perfect sequence.

Application 1. [19] Let a = (0, 1, 1, 1) be the perfect binary sequence of period
4. Let b be a binary sequence of period v with ideal two-level autocorrelation,
where gcd(4, v) = 1. In other words, b is

1) a binary sequence of period v = 2m − 1 with ideal two-level autocorrelation
listed in [9], or

2) a Legendre sequence [26] of period v ≡ 3 (mod 4) where v is prime, or
3) a twin-prime sequence [16] of period v = pq where p and q = p + 2 are

distinct primes, or
4) a Hall’s sextic residue sequence [13] of period v = 4x2 +27 where v is prime.

Then, a binary product sequence p = a + b of period 4v has optimal periodic
autocorrelation from (1), i.e., Cp(τ) ∈ {N, 0, −4}.

3.2 Binary Sequences with Optimal Periodic Autocorrelation
Magnitude

In [30], Yu and Gong presented binary sequences of period N = 4(2m − 1), m =
2k, k > 1 with optimal four-valued periodic autocorrelation by slightly mod-
ifying the product sequences in Application 1 of binary m-sequences and the
perfect sequence. Before introducing the sequences, we first define the concept
of the constant-on-cosets property [12] of binary sequences.
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Definition 1. Let a = {ai} be a binary sequence of period N . Then, a is said
to have the constant-on-cosets property if ai = a2i for all i’s, where the index is
computed modulo N .

Application 2. [30] Let a = (0, 1, 1, 1) be the perfect binary sequence of period
4 and b = {bi} a binary m-sequence of period 2m − 1, m = 2k, k > 1 with the
constant-on-cosets property. Also, let c = {ci} be a binary sequence of period
n = 4(2k + 1) defined by

ci =
{

0, if i �= i′(2k + 1),
zi′ , if i = i′(2k + 1)

where i′ is an integer, 0 ≤ i′ ≤ 3 and z = (z0, z1, z2, z3) is any cyclic shift of
(1, 1, 0, 0). Let u be a binary sequence of period N = 4(2m − 1), m = 2k, k > 1
given by

u = a + b + c where ui = ai + bi + ci, 0 ≤ i ≤ N − 1.

Then, u has the optimal periodic autocorrelation magnitude, i.e., Cu ∈{N, 0, ±4}.
The sequence u has two different balancedness and autocorrelation distributions
according to z.

Theorem 1. [30] Let u be a binary sequence generated by (z0, z1, z2, z3) =
(1, 1, 0, 0) or (1, 0, 0, 1) in Application 2. Then, if the number of 1’s in a period
of u is denoted by ω, then

ω =
N

2
− 1.

Thus, u is almost balanced [20]. Also, the complete distribution of the periodic
autocorrelation Cu(τ) is given by

Cu(τ) =

⎧
⎪⎪⎨

⎪⎪⎩

4(2m − 1), 1 time
0, 22k + 2k+1 − 3 times
−4, 22k+1 − 2k − 2 times
+4, 22k − 2k times.

Theorem 2. [31] Let u be a binary sequence generated by (z0, z1, z2, z3) =
(0, 0, 1, 1) or (0, 1, 1, 0) in Application 2. Then, if the number of 1’s in a period
of u is denoted by ω, then

ω =
N

2
− √

N + 4 + 1.

Also, the complete distribution of the periodic autocorrelation Cu(τ) is given by

Cu(τ) =

⎧
⎪⎪⎨

⎪⎪⎩

4(2m − 1), 1 time
0, 22k + 2k+1 − 3 times
−4, 2k − 2 times
+4, 3 · 2k · (2k − 1) times.

For more details on the autocorrelation and the linear feedback shift register
(LFSR) configuration of the sequences, see [30] and [31].
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4 The Perfect Sequence for Binary Sequences with Good
Aperiodic Autocorrelation

Using the negacyclically perfect sequence ‘00’, Parker has obtained binary se-
quences with merit factor 6.0 by applying a product method [22] [23]. In this
section, we discuss the asymptotic merit factors of product sequences of the per-
fect sequence ‘0111’ and other sequences with high merit factors. Also, we study
the extensions of some of the product sequences by employing the method used
in BCJ-KP sequences [8] [18]. Through intensive experiments, we obtain strong
numerical evidences showing that the sequences have high asymptotic merit fac-
tors even if the proofs cannot yet be provided. Since the perfect sequence has
length 4, the product sequences provide a large class of binary sequences of even
lengths with high merit factors. From private communications, we noticed that
all of these numerical results have been independently observed by Parker and
Jedwab [24].

Before discussing the results, we define the rotation and the appending of a
binary sequence.

Definition 2. [8] Let a = {ai} be a binary sequence of length N . Let r and s
be real numbers with 0 ≤ r ≤ 1 and 0 ≤ s ≤ 1. Then, an r-rotated sequence ar

is defined by a �rN�−cyclic shift of a, i.e.,

ar = {ai+�rN� | 0 ≤ i ≤ N − 1}.

Meanwhile, a t-appended sequence a(t) is defined by the appending of �tN� ele-
ments to a, i.e.,

a(t) = {a
(t)
i | 0 ≤ i ≤ N + �tN� − 1}

where a
(t)
i =

{
ai, 0 ≤ i ≤ N − 1,
ai−N , N ≤ i ≤ N + �tN� − 1.

Therefore, an r-rotated and t-appended sequence of a is defined by

a(t)
r = {a

(t)
r,i | 0 ≤ i ≤ N + �tN� − 1}

where a
(t)
r,i =

{
ai+�rN�, 0 ≤ i ≤ N − 1,
ai+�rN�−N , N ≤ i ≤ N + �tN� − 1.

4.1 The Legendre and the Perfect Sequences

The Legendre sequence a of a prime period p is defined by

ai =
(

i

p

)
=

⎧
⎨

⎩

0, if i = 0
0, if i is quadratic residue modulo p
1, if i is quadratic non-residue modulo p

where
(

i
p

)
is called the Legendre symbol. If p ≡ 3 (mod 4), the Legendre se-

quence has the ideal two-level periodic autocorrelation corresponding to the
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Fig. 1. Merit factors of r-rotated product sequences of length 12476

Paley-Hadamard matrix [21]. We assume p ≡ 3 (mod 4) for all Legendre se-
quences employed in this paper. The asymptotic merit factor of the Legendre
sequence has first been observed by Turyn [11], and theoretically proven by
Hφholdt and Jensen [14]. Let ar be an r-rotated Legendre sequence of length
p. As p goes to infinity, the asymptotic merit factor of the r-rotated Legendre
sequence is given by [14]

1
F (ar)

=
{

8(r − 1
4 )2 + 1

6 , if 0 ≤ r ≤ 1
2

8(r − 3
4 )2 + 1

6 , if 1
2 ≤ r ≤ 1.

(2)

Hence, the maximum asymptotic merit factor of the Legendre sequence is 6 at
r = 1

4 and 3
4 .

Let p = a+b be a product sequence of length N = 4p, where a is the Legendre
sequence of period p and b is the perfect binary sequence of period 4. Fig. 1 shows
the merit factors of pr with length N = 12476 at every rotation r, 0 ≤ r ≤ 1.
In Fig. 1, the solid line corresponds to the merit factors of Legendre sequences
computed by (2). From the figure, we observed that pr with b = (0, 1, 1, 1) has
the same merit factors as Legendre sequences. Thus, we could assume that the
maximum merit factors of pr are also obtained at r = 1

4 or 3
4 . If we apply the

perfect sequence b = (1, 1, 1, 0) instead, then we obtain N
4 -phase shifted merit

factors of the corresponding pr, which can be easily understood.
Fig. 2 shows the merit factors of pr of various lengths N = 4p. In Fig. 2, if N <

20000, then the merit factors are maximum over every rotations r. Otherwise, the
merit factors are observed at r = 1

4 . From Fig. 2, numerical evidence suggests
that the asymptotic merit factors of the product sequences of Legendre and
perfect sequences are 6 at optimal rotations.
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Fig. 2. Merit factors of product sequences (Legendre + Perfect)

Conjecture 1. Let p = a + b be a product sequence of length N = 4p, where
a is the Legendre sequence of period p and b = (0, 1, 1, 1) is the perfect binary
sequence of period 4. Then, the r-rotated product sequence pr has the asymptotic
merit factor 6 at r = 1

4 as N goes to infinity.

If the Legendre sequence is replaced by the modified Jacobi sequence in Con-
jecture 1, then we have obtained similar numerical results of merit factors of 6
in [31], so we establish the following conjecture.

Conjecture 2. Let p = a + b be a product sequence of length N = 4pq, where
a is the modified Jacobi sequence of period pq for distinct primes p and q, and
b = (0, 1, 1, 1) is the perfect binary sequence of period 4. Then, the r-rotated
product sequence pr has the asymptotic merit factor 6 at r = 1

4 as N goes to
infinity.

4.2 The BCJ-KP Sequences and the Perfect Sequence

In [8], Borwein, Choi, and Jedwab presented new binary sequences with merit
factors greater than 6.34. At the same time, Kristiansen and Parker also pre-
sented the equivalent binary sequences with different construction method [18].
The sequences are in fact r-rotated and t-appended Legendre sequences a(t)

r

given by Definition 2, where a is the Legendre sequence. Since their contribu-
tions are equivalently high to this research area, we call the sequences BCJ-KP
sequences. In the BCJ-KP sequences, the highest merit factors are obtained at
the optimal values of r ≈ 0.22 and t ≈ 0.06. Even if they couldn’t provide
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Fig. 3. Merit factors of r-rotated BCJ-KP and LP-BCJ-KP sequences (t = 0.06)

complete mathematical proofs, the results were strongly supported by extensive
numerical observations.

Let p = a + b be a product sequence of length 4p, where a is the Legendre
sequence of a prime period p and b is the perfect binary sequence of period 4. In
this paper, we construct an LP-BCJ-KP sequence p(t)

r of length N = 4p + �4pt�
by r-rotating and t-appending of p, where ‘LP’ means Legendre-Perfect. Fig. 3
shows the merit factors of BCJ-KP and LP-BCJ-KP sequences − a(t)

r and p(t)
r −

with given t = 0.06. Lengths of the sequences are 13405 and 13224, respectively.
In Fig. 3, we see the merit factors of LP-BCJ-KP sequences p(t)

r with b =
(0, 1, 1, 1) are almost identical to those of BCJ-KP sequences a(t)

r at all r’s.
Similar to Fig. 1, the perfect sequence b = (1, 1, 1, 0) generates p(t)

r of length N

whose merit factor is a N
4 -cyclic shift of that of p(t)

r with b = (0, 1, 1, 1). From
Fig. 3, we assume that the LP-BCJ-KP sequences have the maximum merit
factor of 6.34 at r = 0.22 with given t = 0.06.

Fig. 4 shows the merit factors of LP-BCJ-KP sequences p(t)
r of various lengths

N with r = 0.22 and t = 0.06. From the figure, we observed that the LP-BCJ-KP
sequences have the asymptotic merit factors of 6.34.

Conjecture 3. Let p = a + b be a product sequence of length 4p, where a is
the Legendre sequence of a prime period p and b = (0, 1, 1, 1) is the perfect
binary sequence of period 4. Then, the LP-BCJ-KP sequence p(t)

r of length N =
4p + �4pt� has the asymptotic merit factor 6.34 at r ≈ 0.22 and t ≈ 0.06 as N
goes to infinity.
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Fig. 4. Merit factors of LP-BCJ-KP sequences (r = 0.22 and t = 0.06)
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Fig. 5. Merit factors of MJP-BCJ-KP sequences (r = 0.22 and t = 0.06)

In [8], Borwein, Choi, and Jedwab pointed out that their approach − rotation and
appending − could be also applied to (modified) Jacobi sequences. Similarly, mod-
ified Jacobi sequences could replace Legendre sequences in p(t)

r , which is called
MJP-BCJ-KP sequence. Fig. 5 shows the merit factors of the MJP-BCJ-KP
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sequences of length N = p(p + 4) with r = 0.22 and t = 0.06. From the nu-
merical results, we can also conjecture that the asymptotic merit factors of the
MJP-BCJ-KP sequences are 6.34.

Conjecture 4. Let p = a + b be a product sequence of length 4p(p + 4), where
a is the modified Jacobi sequence of period p(p + 4) and b = (0, 1, 1, 1) is the
perfect binary sequence of period 4. Then, the MJP-BCJ-KP sequence p(t)

r of
length N = 4p(p + 4) + �4pt(p + 4)� has the asymptotic merit factor 6.34 at
r ≈ 0.22 and t ≈ 0.06 as N goes to infinity.

5 Conclusion

We have investigated the effectiveness of the perfect binary sequence in applica-
tions for low periodic and aperiodic autocorrelations.

First, the perfect sequence could be employed for generating binary sequences
with optimal periodic autocorrelation by means of a product method and its
slight modification. The application is supported by theoretical proofs.

Second, the perfect sequence could be also applied for extending periods of
binary sequences by a product method, where high merit factors of original
sequences are preserved in the product sequences. If we further apply the rotation
and appending to some of the product sequences, the resulting sequences have
merit factors 6.34 like BCJ-KP sequences [8] [18].
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Abstract. Considered are quadratic p-ary bent functions having the

form f(x) = Trn(axpj+1). Described is the general Gold-like class of
bent functions that covers all the previously known monomial quadratic
cases. Obtained is the exact value of the Walsh transform coefficients
for a bent function in this class. In particular, presented is an explicit
expressions for a dual of a monomial quadratic bent function which is
a bent functions on its own. This gives new examples of generalized
bent functions not previously reported in the literature. The paper is
the follow-up to Helleseth-Kholosha 2006.
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sum.

1 Introduction

Boolean bent functions were first introduced by Rothaus in 1976 as an interesting
combinatorial object with the important property of having the maximum Ham-
ming distance to the set of all affine functions. Later the research in this area
was stimulated by the significant relation to the following topics in computer
science: coding theory, sequences and cryptography (design of stream ciphers
and S-boxes for block ciphers). Kumar, Scholtz and Welch in [1] generalized the
notion of Boolean bent functions to the case of functions over an arbitrary finite
field. Complete classification of bent functions looks hopeless even in the binary
case. In the case of generalized bent functions things are naturally much more
complicated. However, many explicit methods are proved for constructing bent
functions either from scratch or based on other, simpler bent functions.

Given a function f(x) mapping GF(pn) to GF(p), the direct and inverse Walsh
transform operations on f are defined at a point by the following respective
identities:

Sf (b) =
∑

x∈GF(pn)

ωf(x)−Trn(bx) and ωf(x) =
1
pn

∑

b∈GF(pn)

Sf (b)ωTrn(bx)

� This work was supported by the Norwegian Research Council.
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where Trn() : GF(pn) → GF(p) denotes the absolute trace function, ω = e
2πi

p is
the complex primitive pth root of unity and elements of GF(p) are considered as
integers modulo p. In the sequel, Sa(b) is also used to denote the Walsh transform
coefficient of a function that depends on parameter a when it is clear from the
context which function we mean.

According to [1], f(x) is called a p-ary bent function (or generalized bent
function) if all its Walsh coefficients satisfy |Sf (b)|2 = pn. A bent function f(x)
is called regular (see [1, Definition 3] and [2, p. 576]) if for every b ∈ GF(pn) the
normalized Walsh coefficient p−n/2Sf (b) is equal to a complex pth root of unity,
i.e., p−n/2Sf (b) = ωf∗(b) for some function f∗ mapping GF(pn) into GF(p). A
bent function f(x) is called weakly regular if there exists a complex u having
unit magnitude such that up−n/2Sf (b) = ωf∗(b) for all b ∈ GF(pn). We call
u−1pn/2 the magnitude of Sf (b). Throughout this paper, pn/2 with odd n stands
for the positive square root of pn. A function F (x) mapping GF(pn) to itself
will also be called generalized bent if Trn(F (x)) is bent according to the above
definition. In the present paper, we take an odd prime p and examine prospective
monomial quadratic p-ary bent functions having the form f(x) = Trn

(
axpj+1

)

with a, x ∈ GF(pn), a �= 0.
Weakly regular bent functions always appear in pairs. Indeed, if f(x) is a

(weakly) regular bent function and Sf (b) = u−1pn/2ωf∗(b) for b ∈ GF(pn), then
the function f∗(b) is called the dual of f . The inverse Walsh transform of such
f(x) gives

upn/2ωf(x) =
∑

b∈GF(pn)

ωf∗(b)+Trn(bx) = Sf∗(−x) .

Thus, the dual of a (weakly) regular bent function is again a (weakly) regular
bent function and f∗∗(x) = f(−x), f∗∗∗(x) = f∗(−x), f∗∗∗∗(x) = f(x).

Following the definition of a bent function, the standard method for proving
that a function is bent would be to evaluate the absolute square of its Walsh
coefficients. However, this technique does not help in telling if the function is
(weakly) regular and in finding its dual. In the current paper, we evaluate explic-
itly the Walsh transform coefficients of monomial quadratic bent functions over
finite fields of odd characteristic. This is the main contribution here if compared
to a recent paper [3] by the same authors.

There are only a few proven cases of monomial bent functions and most of
them are quadratic. For a comprehensive reference on this topic we refer the
reader to [3]. In this paper, we prove the general Gold-like form of a mono-
mial quadratic bent function that covers the known Sidelnikov, Kumar-Moreno
[4] and Kasami [5] cases. The Walsh transform coefficients for Sidelnikov and
Kumar-Moreno bent functions were explicitly calculated by Coulter in [6, Theo-
rem 1 (i), Lemma 3.2]. Here, we solve this problem completely for any monomial
quadratic bent function and show that any such a function is (weakly) regular.
In particular, we find dual functions that give new examples of generalized bent
functions not previously reported in the literature.
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2 Preliminaries

We start with the following lemmas. Let v(b) denote the (additive) 2-adic valu-
ation of integer b (i.e., the maximal power of 2 dividing b). Let ξ be a primitive
element of GF(pn) and for a ∈ GF(pn)∗ define ind(a) as the unique integer t with
a = ξt and 0 ≤ t < pn − 1. According to [7, Example 5.10], the real-valued func-
tion η on GF(pn)∗ with η(c) = 1 if c is the square of an element of GF(pn)∗ and
η(c) = −1 otherwise, is called the quadratic character of GF(pn). The following
lemma can also be found in [8, Lemma 2.6] and [9, Lemma 7.2].

Lemma 1. For an odd prime p

gcd
(
pj + 1, pn − 1

)
=

{
p gcd(j,n) + 1, if v(j) < v(n)
2, otherwise .

Proof. Denote d = gcd(pj+1, pn−1). It is easy to see that if v(p2j−1) ≤ v(pn−1)
then

p gcd(2j,n) − 1 = gcd(p2j − 1, pn − 1) = d gcd(pj − 1, pn − 1) = d(p gcd(j,n) − 1)

since gcd(pj − 1, pj + 1) = 2. Alternatively, if v(pn − 1) < v(p2j − 1) then

2(p gcd(2j,n) − 1) = d(p gcd(j,n) − 1) .

Note that if n is odd then d = 2. Further consider only even n.
It is well known that v(pb − 1) = v(p + 1) + v(b) if p ≡ 3 (mod 4) and b is

even; in the remaining cases v(pb − 1) = v(p − 1) + v(b). Thus, for even n the
condition v(pn − 1) < v(p2j − 1) is equivalent to v(n) ≤ v(j). In this case, d = 2
as well. Otherwise we have

d =
p gcd(2j,n) − 1
p gcd(j,n) − 1

=
p 2 gcd(j,n) − 1
p gcd(j,n) − 1

= p gcd(j,n) + 1

when v(j) < v(n). ��

Lemma 2. Let p be an odd prime, j ∈ {1, . . . , n} and a ∈ GF(pn) be nonzero.

(i) If v(n) ≤ v(j) then

∑

x∈GF(pn)

ω
Trn

(
axpj+1

)

=
{

η(a)(−1)n−1pn/2, if p ≡ 1 (mod 4)
η(a)(−1)n−1inpn/2, if p ≡ 3 (mod 4) .

(ii) If v(n) > v(j) + 1 then

∑

x∈GF(pn)

ω
Trn

(
axpj+1

)

=
{−pn/2+gcd(j,n), if a ∈ C0

pn/2, otherwise .
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(iii) If v(n) = v(j) + 1 then

∑

x∈GF(pn)

ω
Trn

(
axpj+1

)

=
{

pn/2+gcd(j,n), if a ∈ Cd/2

−pn/2, otherwise

where d = p gcd(j,n) + 1 and Ct = {a ∈ GF(pn)∗ | ind(a) ≡ t (mod d)}.
Proof. First, note that if ξ is a primitive element of GF(pn) then

∑

x∈GF(pn)

ω
Trn

(
axpj+1

)

= 1 +
pn−2∑

t=0

ω
Trn

(
aξt(pj+1)

)

= 1 +
pn−2∑

t=0

ωTrn(aξtd) =
∑

x∈GF(pn)

ωTrn(axd)

where d = gcd(pj + 1, pn − 1) and since

{t(pj+1) (mod pn−1) | t = 0, . . . , pn−2} = {td (mod pn−1) | t = 0, . . . , pn−2}.

Therefore, the exponents pj + 1 can be replaced with d without affecting the
value of the questioned sum. The value of d is given by Lemma 1. For those
values of j giving d = 2 we use [7, Theorems 5.15, 5.33] and the remaining cases
when v(j) < v(n) are settled by [10, Lemma 3.5] (see [11,8] for the proofs). ��
Lemma 3. For any nonzero a ∈ GF(pn) and j ∈ {1, . . . , n} assume e =
n/ gcd(j, n) is even. Let d = p gcd(j,n) + 1 and

D(a) = (−1)
e
2

(
a

pje−1
pj+1 + a

− pje−1
pj+1

)
− 2 . (1)

Then D(a) ∈ GF(pj) and D(a) = 0 if and only if one of the following holds

(i) v(n) > v(j) + 1 and d divides i0,
(ii) v(n) = v(j) + 1 and d/2 divides i0 with 2i0/d being odd,

where i0 = ind(a).

Proof. Obviously,
pj(pje−1)

pj+1 ≡ − pje−1
pj+1 (mod pn − 1) and, thus, D(a)pj

= D(a)
so D(a) ∈ GF(pj). It is also clear that D(a) = 0 can be viewed as a quadratic

equation having a unique solution a
pje−1
pj+1 = (−1)

e
2 . The latter holds if and only

if
i0

(
pje − 1

)

pj + 1
≡ e (pn − 1)

4
(mod pn − 1) .

Note that pn−1 divides pje−1 since n divides je and that gcd
(
pj + 1, pn − 1

)
=

d, by Lemma 1, since e is even that is equivalent to v(n) > v(j). Therefore, all
the terms in the latest equivalence can be divided by pn−1

d which leads to

i0
(
pje − 1

)
d

(pn − 1) (pj + 1)
≡ ed

4
(mod d) . (2)
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Further, if gcd
(
d, pje−1

pj+1

)
= q1 then p gcd(j,n) (mod q1) = −1 and

pj(e−i) =
(
p gcd(j,n)

) j
gcd(j,n) (e−i)

≡ (−1)e−i (mod q1)

for any i = {1, . . . , e}. Thus, since e is even,

pje − 1
pj + 1

= pj(e−1) − pj(e−2) + · · · − 1 ≡ −e ≡ 0 (mod q1) .

In a similar way, it can be shown that if gcd
(
d, pje−1

pn−1

)
= q2 then j

gcd(j,n) = je
n ≡

0 (mod q2). Now we conclude that

gcd

(
d,

(
pje − 1

)
d

(pn − 1) (pj + 1)

) ∣∣∣∣∣ gcd(q1, q2)
∣∣∣∣ gcd

(
n

gcd(j, n)
,

j

gcd(j, n)

)
= 1 .

Thus, d is coprime to (pje−1)d

(pn−1)(pj+1) .
(i) First, assume v(n) > v(j) + 1 which gives v(e) = v(n) − v(j) > 1 meaning

that 4 divides e. In this case, (2) holds if and only if d divides
i0(pje−1)d

(pn−1)(pj+1) that
is equivalent to d divides i0.

(ii) Now assume v(n) = v(j) + 1 which gives v(e) = v(n) − v(j) = 1. In this

case, (2) holds if and only if d/2 divides
i0(pje−1)d

(pn−1)(pj+1) and
2i0(pje−1)

(pn−1)(pj+1) − e
2 is

even. The first of these two conditions is equivalent to d/2 divides i0 and, thus,

the second condition means
d(2i0/d)(pje−1)
(pn−1)(pj+1) is odd, since e/2 is odd. The latter

holds if and only if

v(d) + v(2i0/d) + v(pje − 1) = v(pn − 1) + v(pj + 1)

which becomes v(d) + v(2i0/d) = v(pj + 1), using the identities for v(pb − 1)
from the proof of Lemma 1. Now, using the same identities and v(p2b − 1) =
v(pb−1)+v(pb+1), it can be easily obtained that v(pb+1) = v(p+1)−v(p−1)+1
if p ≡ 3 (mod 4) and b is odd; in the remaining cases v(pb + 1) = 1. Therefore,
v(d) = v(p gcd(j,n) + 1) = v(pj + 1) and v(2i0/d) = 0 which is exactly our claim
that 2i0/d is odd. ��

3 Quadratic Monomial Bent Functions

In this section, we consider quadratic monomial functions with the exponent
of the Gold type. Our approach allows to derive explicit requirements on the
value of the coefficient a. Moreover, these results provide the generalization for
the known monomial cases of p-ary bent functions due to Sidelnikov, Kumar-
Moreno and Kasami. We also study closely the property of these bent functions
to be (weakly) regular. To that end, we prove that any monomial quadratic bent
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function is (weakly) regular and give the exact value of the Walsh transform
coefficients for a bent function in this class. In particular, we obtain an expression
for the dual of such functions.

Take a quadratic function F (x) =
∑n−1

i=0 aix
pi+1 and define

F ∗(x) =
n−1∑

i=0

(
apI

i xpI+i

+ apI−i

i xpI−i
)

,

where I = max{i | ai �= 0; i = 0, 1, . . . , n − 1}. Note that F ∗(x) is a linearized
polynomial. Then, according to [9, Corollary 3.2],

Sf (b) =
{

ω−f(x0)Sf (0), if F ∗(x) = −bpI

has a solution x0 ∈ GF(pn) ,
0, otherwise ,

(3)

where f(x) = Trn(F (x)) (similar result for monomial quadratic functions was
earlier proved in [6, Theorem 3.1]). Therefore, if f(x) is bent then the equation
F ∗(x) = −bpI

has a solution for any b ∈ GF(pn) (this solution is unique) or,
equivalently, F ∗(x) = 0 only for x = 0 (since if the linear operator on GF(pn)
defined by F ∗(x) has the kernel of dimension zero then the image contains all
the elements of GF(pn)). It was also shown in [9, Lemmas 2.1, 3.1] that |Sf (0)| =
p(2n−r)/2, where r is the rank of the quadratic form associated with f and that
the equation F ∗(x) = 0 has pn−r solutions. Thus, for the reverse implication, if
F ∗(x) = 0 only for x = 0 then r = n and f(x) is bent.

Theorem 1. Let a ∈ GF(pn) be nonzero and a prime p be odd. Then for any
j ∈ {1, . . . , n}, the quadratic p-ary function f(x) mapping GF(pn) to GF(p) and
given by

f(x) = Trn

(
axpj+1

)
(4)

is bent if and only if

p gcd(2j,n) − 1
∣∣∣∣/

pn − 1
2

− ind(a)(pj − 1) . (5)

Moreover, if (5) holds then f(x) is a (weakly) regular bent function and for
b ∈ GF(pn) the corresponding Walsh transform coefficient of f(x) is equal to

Sa(b) = Sa(0)ω−Trn

(
axpj+1

0

)

, (6)

where x0 is a unique solution of the equation apj

xp2j

+ ax = −bpj

. Further, if
e = n/ gcd(j, n) is odd then (5) is satisfied by any nonzero a and

x0 = −1
2

e−1∑

t=0

(−1)ta
− pj(2t+1)+1

pj+1 bpj(2t+1)
. (7)

If e is even and (5) holds then D(a) defined in (1) is nonzero and

D(a)x0 =
e/2−1∑

t=0

(−1)t

(
(−1)

e
2+1a

− pj(2t+1)+pje

pj+1 + a
− pj(2t+1)+1

pj+1

)
bpj(2t+1)

.
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Finally, the magnitude of Sa(b) that is equal to Sa(0) can be determined using
Lemma 2 given the concrete values of j and n.

Proof. By the arguments following (3), f(x) of type (4) is bent if and only if
F ∗(x) = apj

xp2j

+ ax = 0 only for x = 0. If x is nonzero then F ∗(x) = 0
is equivalent to xp2j−1 = −a1−pj

. Let i0 = ind(a) ∈ {0, . . . , pn − 2}. Then
−a1−pj

= ξ
pn−1

2 −i0(pj−1). Consider the following equation of the unknown t ∈
{0, . . . , pn − 2}

ξ
pn−1

2 −i0(pj−1) = ξ(p2j−1)t

which holds if and only if pn−1
2 − i0(pj − 1) ≡ (p2j − 1)t (mod (pn − 1)). The

latter congruence has a solution in t if and only if

gcd
(
p2j − 1, pn − 1

)
= p gcd(2j,n) − 1

∣∣∣∣
pn − 1

2
− i0(pj − 1) .

Thus, condition (5) holds if and only if apj

xp2j �= −ax for any nonzero x ∈
GF(pn) which is equivalent to f(x) being bent.

Identity (6) for Sa(b) follows immediately from (3) and in its turn, by (6), any
bent function having the form of (4) is (weakly) regular. Recall that for those
a ∈ GF(pn)∗ satisfying (5) we have apj

xp2j

+ ax �= 0 unless x = 0. It means that
this linear operator on GF(pn) has the kernel of dimension zero and thus, the
image contains all the elements of GF(pn). Therefore, apj

xp2j

+ ax = −bpj

has
a unique solution x0 for any b ∈ GF(pn).

It can be checked directly that our expressions for x0 are correct since if e is
odd then

apj

(2x0)p2j

= −
e−1∑

t=0

(−1)ta
pj− p2j(pj(2t+1)+1)

pj+1 bpj(2t+3)

= −
e−1∑

t=0

(−1)ta
1− pj(2t+3)+1

pj+1 bpj(2t+3)
= a

e∑

t=1

(−1)ta
− pj(2t+1)+1

pj+1 bpj(2t+1)

= −2ax0 − bpj − a
1− pj(2e+1)+1

pj+1 bpj

= −2ax0 − 2bpj

,

since

pj(2e+1) + 1
pj + 1

=
2e∑

t=0

(−1)tpjt ≡
e−1∑

t=0

(−1)tpjt +
e−1∑

t=0

(−1)t+1pjt + 1 (mod pn − 1) .

We refer the reader also to [6, Lemma 3.2] where a direct method to solve the
equation apj

xp2j

+ ax = −bpj

with e odd is presented.
If e is even then

apj

(D(a)x0)p2j

=
e/2−1∑

t=0

(−1)t

(
(−1)

e
2+1a

pj− pj(2t+3)(pj(e−2t−1)+1)
pj+1 + a

pj− p2j(pj(2t+1)+1)
pj+1

)
bpj(2t+3)
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=
e/2−2∑

t=0

(−1)t

(
(−1)

e
2+1a

1− pj(2t+3)(pj(e−2t−3)+1)
pj+1 + a

1− pj(2t+3)+1
pj+1

)
bpj(2t+3)

+
(

1 + (−1)
e
2−1a

1− pj(e+1)+1
pj+1

)
bpj(e+1)

= −a

e/2−1∑

t=1

(−1)t

(
(−1)

e
2+1a

− pj(2t+1)(pj(e−2t−1)+1)
pj+1 + a

− pj(2t+1)+1
pj+1

)
bpj(2t+1)

+
(

1 − (−1)
e
2 a

pje−1
pj+1

)
bpj

= −aD(a)x0 +
(

2 − (−1)
e
2 a

pje−1
pj+1 − (−1)

e
2 a

−pje−1
pj+1

)
bpj

= −aD(a)x0 − D(a)bpj

.

Now we have to prove that when e is even (i.e., v(n) > v(j)) then D(a) �= 0
if (5) holds. In this case, gcd(2j, n) = 2 gcd(j, n) and denote d = p gcd(j,n) + 1.
First, assume v(n) > v(j) + 1. Since for any positive integers g and l holds

pgl − 1
pg − 1

= pg(l−1) + pg(l−2) + . . . + 1 ≡ l (mod 2) , (8)

we have pn−1
p gcd(2j,n)−1

≡ n
gcd(2j,n) ≡ 0 (mod 2) and thus, p gcd(2j,n) − 1 divides

(pn−1)/2. Therefore, (5) holds if and only if p gcd(2j,n)−1 does not divide i0(pj−1)
or, equivalently, d does not divide i0(pj − 1)/(p gcd(j,n) − 1). Note that v(j) =
v(gcd(j, n)) and, by Lemma 1, gcd(d, pj − 1) = 2. Again, by (8), pj−1

p gcd(j,n)−1
≡

j
gcd(j,n) ≡ 1 (mod 2) and thus, d is coprime to (pj − 1)/(p gcd(j,n) − 1) and (5)
holds if and only if d does not divide i0.

Finally, assume v(n) = v(j) + 1. By (8), both (pn − 1)/(p gcd(2j,n) − 1) and
(pj − 1)/(p gcd(j,n) − 1) are odd. Similarly to the previous case, it can be proved
that the condition

p gcd(2j,n) − 1
2

∣∣∣∣
pn − 1

2
− i0(pj − 1)

holds if and only if d/2 divides i0. Therefore, (5) does not hold if and only if d/2
divides i0 and

pn − 1
p gcd(2j,n) − 1

− 2i0
d

pj − 1
p gcd(j,n) − 1

is even or, equivalently, 2i0/d is odd. We conclude that if e is even and (5) holds
then, by Lemma 3, D(a) �= 0. Thus, apj

xp2j

0 +ax0 = −bpj

since D(a) ∈ GF(pj)∗.
To finalize the proof, note that the value of the Walsh transform of f(x) in

point zero is equal to Sa(0) =
∑

x∈GF(pn) ω
Trn

(
axpj+1

)

and can be found using
Lemma 2. Since f is a (weakly) regular bent function, the magnitude of Sa(b)
does not depend on b and is equal to the magnitude of Sa(0). ��
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Corollary 1. Given the conditions of Theorem 1, f(x) = Trn

(
xpj+1

)
is a bent

function if and only if n
gcd(2j,n) is odd. Moreover, if the latter condition holds

then f(x) is (weakly) regular.

Proof. Consider function (4) with a = 1. This is a bent function if and only
if condition (5) holds with ind(a) = 0, i.e., when p gcd(2j,n) − 1

∣∣∣/ pn−1
2 . The

latter holds if and only if pn−1
p gcd(2j,n)−1

is odd and it remains to note that, by (8),
pn−1

p gcd(2j,n)−1
≡ n

gcd(2j,n) (mod 2). ��

Assuming j = n for an arbitrary n and j = k for even n = 2k in Theorem 1 leads
directly to the Sidelnikov and Kasami p-ary bent functions. In the following two
corollaries, we find the actual value of the Walsh transform coefficients for these
two known classes of bent functions. This can be done applying directly (6)
and Lemma 2, however, the corresponding character sums can also be computed
directly and we demonstrate this in the proofs.

Corollary 2 (Sidelnikov). For any nonzero a ∈ GF(pn) and odd prime p, the
function f(x) = Trn

(
ax2

)
is a (weakly) regular bent function. Moreover, for

b ∈ GF(pn) the corresponding Walsh transform coefficient of f(x) is equal to

Sa(b) = η(a)(−1)n−1pn/2ω
−Trn

(
b2
4a

)

, if p ≡ 1 (mod 4)

and

Sa(b) = η(a)(−1)n−1inpn/2ω
−Trn

(
b2
4a

)

, if p ≡ 3 (mod 4)

where i is the complex primitive fourth root of unity and η is the quadratic
character of GF(pn).

Proof. From Theorem 1 it readily follows that Sidelnikov functions are (weakly)
regular bent function for any nonzero a ∈ GF(pn) (assume j = n). The exact
value of the Walsh transform coefficients can be obtained using [7, Theorem 5.33]
as following

Sa(b) =
∑

x∈GF(pn)

ωTrn(ax2−bx) = ω
−Trn

(
b2
4a

)

η(a)G(η, χ1)

where χ1 is the canonical additive character of GF(pn) and G(η, χ1) is the Gaus-
sian sum. By [7, Theorem 5.15],

G(η, χ1) =
{

(−1)n−1pn/2, if p ≡ 1 (mod 4)
(−1)n−1inpn/2, if p ≡ 3 (mod 4) .

In particular, when n is even

Sa(b) = −η(a)(−1)
(p−1)n

4 pn/2ω
−Trn

(
b2
4a

)

= ±pn/2ω
−Trn

(
b2
4a

)



On the Dual of Monomial Quadratic p-ary Bent Functions 59

and, depending on a, p and n, f(x) can be regular or weakly regular. Alterna-
tively, when n is odd

p−n/2ω
Trn

(
b2
4a

)

Sa(b) =
{

η(a), if p ≡ 1 (mod 4)
η(a)(−1)(n−1)/2i, if p ≡ 3 (mod 4)

and f(x) can be regular or weakly regular in the first case and only weakly
regular in the second. ��
Corollary 3 (p-ary Kasami). Let n = 2k and a ∈ GF(pn) for an odd prime
p. Then the function f(x) = Trn

(
axpk+1

)
is bent if and only if a + apk �= 0.

Moreover, if the latter condition holds then f(x) is weakly regular and for b ∈
GF(pn), the corresponding Walsh transform coefficient of f(x) is equal to

Sa(b) = −pkω
−Trk

(
bpk+1

a+apk

)

.

Proof. It follows easily from Theorem 1 that f(x) is bent. Indeed, for n = 2k and
j = k, the condition opposite to (5) is pn − 1

∣∣∣ pn−1
2 − ind(a)(pk − 1) . On the

other hand, any nonzero a ∈ GF(pn) satisfies a + apk

= 0 (which is equivalent
to apk−1 = −1) if and only if ind(a)(pk − 1) ≡ pn−1

2 (mod (pn − 1)).
The Walsh transform coefficient of the f(x) evaluated at b is equal to

Sa(b) =
∑

x∈GF(pn)

ω
Trn

(
axpk+1−bx

)

=
∑

x∈GF(pn)

ω
Trk

((
a+apk

)
xpk+1−bx−bpk

xpk
)

=
∑

x∈GF(pn)

ω
Trk

(
a1(x−β)pk+1−a1βpk+1

)

(∗)
= ω

−Trk

(
a1βpk+1

)
⎛

⎝(pk + 1)
∑

z∈GF(pk)∗

ωTrk(a1z) + 1

⎞

⎠

= −pkω
−Trk

(
bpk+1

a+apk

)

where a1 = a+ apk �= 0 and b = a1β
pk

(thus, βpk+1 = bpk+1

a2
1

) and (∗) holds since

raising elements of GF(pn)∗ to the power of pk + 1 is a (pk + 1)-to-1 mapping
onto GF(pk)∗ as proved in [12, Lemma 1]. Therefore, p-ary Kasami functions are
weakly regular bent functions. ��
The class of bent functions due to Kumar and Moreno is an immediate conse-
quence of Theorem 1 as well.

Corollary 4 (Kumar, Moreno [4]). Let n = ek for an odd integer e and
take integer r in the range 1 ≤ r ≤ e with gcd(r, e) = 1. Then the function
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f(x) = Trn

(
axprk+1

)
is a (weakly) regular bent function for any nonzero a ∈

GF(pn) and odd prime p.

Proof. If n = ek and j = rk then gcd(2j, n) = gcd(2rk, ek) = k gcd(2r, e) = k.
The condition opposite to (5) looks like pk − 1

∣∣∣ pek−1
2 − ind(a)(prk − 1) that

is equivalent to pk − 1
∣∣∣ pek−1

2 and holds if and only if pek−1
pk−1

is even. However,
pek−1
pk−1

≡ e ≡ 1 (mod 2), by (8) and since e is odd. ��

The following corollary contains an equivalent definition of the Kumar-Moreno
class of p-ary bent functions that appeared in [13, Definition 7.5]. Note that if

n
gcd(j,n) is odd (as required in Corollary 5) then n

gcd(2j,n) is odd as well and this is
a condition of Corollary 1. Moreover, if one of the following equivalent conditions
is fulfilled – either gcd(2j, n) divides j or n

gcd(j,n) is odd or gcd(2j, n) = gcd(j, n)
(in particular, this is true for an odd n) then (5) is equivalent to p gcd(j,n) −
1

∣∣∣/ pn−1
2 which holds if and only if pn−1

p gcd(j,n)−1
is odd. By (8), pn−1

p gcd(j,n)−1
≡

n
gcd(j,n) ≡ 1 (mod 2). Thus, (5) holds for any nonzero a ∈ GF(pn) and j ∈
{1, . . . , n} meaning that all monomial quadratic bent functions in this case are
of the Kumar-Moreno type. The Walsh transform coefficients for such functions
were computed earlier in [6, Theorem 1 (i), Lemma 3.2].

Corollary 5. Let j be an integer with 1 ≤ j ≤ n such that n
gcd(j,n) is odd. Then

the function f(x) = Trn

(
axpj+1

)
is a (weakly) regular bent function for any

nonzero a ∈ GF(pn) and odd prime p. Moreover, for b ∈ GF(pn) the magnitude
of Sa(b) is equal to

ω
Trn

(
axpj+1

0

)

Sa(b) =
{

η(a)(−1)n−1pn/2, if p ≡ 1 (mod 4)
η(a)(−1)n−1inpn/2, if p ≡ 3 (mod 4)

where i is the complex primitive fourth root of unity, η is the quadratic character
of GF(pn) and x0 is given by (7).

Proof. We will prove that the conditions of Corollaries 4 and 5 are equivalent.
Denote k = gcd(j, n) and e = n/k that is odd under the hypothesis. Since k
divides j, let j = rk with gcd(r, e) = 1. Finally, the requirement 1 ≤ j ≤ n
guarantees that 1 ≤ r ≤ e.

Since n
gcd(j,n) is odd, it can be concluded that v(n) ≤ v(j). Thus, we get in

the conditions of Lemma 2 item (i) that gives us the magnitude of Sa(b) and the
rest follows from Theorem 1. ��
Note 1. Recall that conditions of Theorem 1 allow the values of j to be in the
range {1, . . . , n}. On the other hand, if n = 2k + 1 or n = 2k then for any j > k
we can write (pj +1)pn−j = pn+pn−j ≡ pn−j +1 ( mod pn−1). Thus, exponents
pj + 1 and pn−j + 1 are cyclotomic equivalent and we can assume j to be in the
range {0, . . . , k}.
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4 Conclusion

We considered quadratic functions over GF(pn) (p is odd) that can be repre-
sented in the univariate form as f(x) = Trn(axpj+1) with a ∈ GF(pn). We
proved the criterion on a for such a function to be generalized bent. All the
previously known monomial quadratic bent functions appear as a particular
case of our general result. Moreover, we obtained the explicit expression for
the Walsh transform coefficients of a bent function in this class. In particular,
this determines the dual of a monomial quadratic bent function which is also a
bent function. This dual function belongs to a new, previously unknown, class
of generalized bent functions. A challenging open problem is to find the Walsh
transform coefficients (the dual function, in particular) for a quadratic bent func-
tion consisting of more than a single term in its univariate representation. By
(3), this task requires finding x0 with F ∗(x0) = −bpI

which seems to be difficult
in general.
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Abstract. In this paper, for a positive odd integer n, a new family of
binary sequences with 2n +1 sequences of length 2n −1 taking three level
nontrivial correlations −1 and −1±2(n+1)/2 is presented, whose correla-
tion distribution is the same as that of the well-known Gold sequences.
This family may be considered as a new class of Gold-like sequences.

Keywords: Binary sequence, Gold sequence, Gold-like sequence.

1 Introduction

Sequence sets with good correlations are widely used in many applications, for
example Code Division Multiple Access (CDMA) communication systems and
cryptography system [2]. Since the late sixties, many families of binary sequences
of length 2n − 1 have been found [4], where n is a positive integer. Among them,
when n is odd, the well-known Gold sequence family is the oldest binary family
of 2n + 1 sequences having three level out of phase auto- and cross-correlation
(nontrivial correlation) values −1 and −1 ± 2(n+1)/2 [3]. The family is optimal
with respect to the Sidelnikov bound [7]. In 1990s, Boztas and Kumar discovered
an optimal sequence family [1], which has the same correlation distribution as
that of Gold sequences but larger linear span, and therefore named it Gold-like
sequences. Later, Kim and No further generalized the Gold-like sequences to
GKW-like sequences by the quadratic form technique [5].

In this paper, we use quadratic form technique to generalize Gold-like se-
quences. As a result, we get a new family of optimal binary sequences with
2n + 1 sequences of length 2n − 1, whose correlation distribution is identical to
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that of Gold sequence for n odd. In this sense, this family can be seen as a new
class of Gold-like sequences.

The paper is organized as follows. In Section 2, we give the notation and the
necessary preliminaries required for the subsequent sections. In Section 3, we
present the new family of binary sequences and our main result. In Section 4, we
investigate two quadratic forms involved in computing the correlation function
of the new sequences. Finally in Section 5, we give the proof of our main result.

2 Preliminaries

For convenience, the following notations are used throughout this paper

– Fq is the finite fields with q elements, and F∗
q denotes its multiplicative

group.
– n, m, and e are odd integers with n = em and m ≥ 3.
– ζ is an element in F2e and ζ �= 1.
– {ζ0, ζ1, · · · , ζ2n−1} is an enumeration of the elements in F2n .
– trn

e (x) =
∑m−1

l=0 x2el

and trn
1 (x) =

∑n−1
l=0 x2l

are the trace functions from
F2n to F2e and F2n to F2 respectively.

Let a = (a(0), a(1), · · · , a(N − 1)) and b = (b(0), b(1), · · · , b(N − 1)) be two
binary sequences of period N , we define the periodic correlation between a and
b as

Ra,b(τ) =
N−1∑

t=0

(−1)a(t)+b(t+τ), 0 ≤ τ < N.

Basically, in this paper the correlation functions of all the sequences could be
transformed into the following form:

F (λ) =
∑

x∈F2n

(−1)f(x)+trn
1 (λx), (1)

where f(x) is a quadratic form in F2n over F2 and λ ∈ F2n . Usually, F (λ) is
also called the trace transform of f(x).

Definition 1. Let x =
∑n

i=1 xiαi where xi ∈ F2 and αi, i = 1, 2, . . . , n, is a
basis for F2n over F2. Then the function f(x) over F2n to F2 is a quadratic
form if it can be expressed as

f(x) = f(
n∑

i=1

xiαi) =
n∑

i=1

n∑

j=1

bi,jxixj ,

where bi,j ∈ F2 , that is f(x) is a homogeneous polynomial of degree 2 on Fn
2 .
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The quadratic form has been well analyzed in [6]. It should be noted that a
quadratic form is completely determined by its rank, which is defined as the
minimum number of variables required to represent the function under the non-
singular coordinate transformations.

The following lemma is useful to establish the relationship between the trace
transform and the rank of a quadratic form.

Lemma 1 ([4]). Let f(x) be a quadratic form in F2n over F2. If the rank of
f(x) is 2r, 2 ≤ 2r < n, then the distribution of the trace transform values is
given by

F (λ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2n−r, 22r−1 + 2r−1 times

0, 2n − 22r times

−2n−r, 22r−1 − 2r−1 times

. (2)

From Lemma 1, the rank of the quadratic form is crucial to compute its trace
transform. In [6], it is shown that the rank 2r is related to the number of solution
of x ∈ F2n to

B(x, z) = f(x) + f(z) + f(x + z) = 0, ∀z ∈ F2n . (3)

More precisely, suppose that the number of solutions is N , then 2r = n− log2 N .
In terminology, B(x, z) = f(x) + f(z) + f(x + z) is called symplectic form of
quadratic form f(x).

Bozats and Kumar [1] studied the quadratic form p(x) defined as

p(x) =

n−1
2∑

l=1

trn
1 (x2l+1).

Lemma 2 ([1]). The associated symplectic form of p(x) is

B(x, z) = p(x) + p(z) + p(x + z) = trn
1 [z(trn

1 (x) + x)]. (4)

Based on p(x), Bozats and Kumar obtained a family of binary sequence.

Definition 2 ([1]). Sequences family G = {gi, i = 0, 1, · · · , 2n} of length 2n − 1
is defined by

gi(t) =

⎧
⎨

⎩
trn

1 (ζiα
t) + p(αt), 0 ≤ i < 2n

trn
1 (αt), i = 2n

. (5)

Theorem 3 ([1]). The correlation distribution of family G is

Ri,j(τ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−1 + 2n, 2n + 1 times

−1, 23n−1 + 22n − 2n − 2 times

−1 + 2
n+1
2 , (22n − 2)(2n−2 + 2

n−3
2 ) times

−1 − 2
n+1
2 , (22n − 2)(2n−2 − 2

n−3
2 ) times

.
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This family is called Gold-like sequences since it possesses the same correlations
as those of Gold sequences [3]. In 2003, Kim and No generalized the quadratic
form p(x) to

q(x) =

m−1
2∑

l=1

trn
1 (x2el+1),

whose symplectic form is the following.

Lemma 4 (Kim and No [5]). The associated symplectic form of q(x) is

B(x, z) = q(x) + q(z) + q(x + z) = trn
1 [z(trn

e (x) + x)]. (6)

3 Main Result

In this section, we construct a family of sequences based on two quadratic forms
p(x) and q(ζx) as follows.

Definition 3. The binary family U of sequences {ui, i = 0, 1, · · · , 2n} of length
2n − 1 is defined by

ui(t) =

⎧
⎨

⎩
trn

1 (ζiα
t) + p(αt) + q(ζαt), 0 ≤ i < 2n

trn
1 (αt), i = 2n

. (7)

For the correlation property of the family U , we have the main result below.

Theorem 5. Family U has the following properties:

1. The maximal absolute value of nontrival correlation of Family U is bounded
by Rmax ≤ 1 + 2

n+1
2 . The family is optimal with respect to the Sidelnikov

bound.
2. The correlation distribution of Family U is as follows:

Ri,j(τ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−1 + 2n, 2n + 1 times

−1, 23n−1 + 22n − 2n − 2 times

−1 + 2
n+1
2 , (22n − 2)(2n−2 + 2

n−3
2 ) times

−1 − 2
n+1
2 , (22n − 2)(2n−2 − 2

n−3
2 ) times

.

3. The maximal linear complexity of Family U is bounded by n(n + 1)/2.

Remark 1. When ζ = 0, the sequences Family U in Definition 3 is Gold-like
family in (5). When ζ ∈ F2e \{0, 1}, the new sequences Family U in Definition 3
has the same correlation distribution as those of Gold sequences and also Gold-
like sequences.
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4 Two Quadratic Forms and Their Trace Transforms

A. Quadratic form p(x) + q(ζx)

From (4) and (6), the symplectic form of p(x) + q(ζx) is

B(x, z) = trn
1 [z(trn

1 (x) + ζtrn
e (ζx) + x + ζ2x)].

According to (3), for computing the rank of the quadratic form p(x) + q(ζx), it
suffices to find the number of solutions to

trn
1 (x) + ζtrn

e (ζx) + x + ζ2x = 0.

Let trn
e (x) = a. Then

x =
tre

1(a) + ζ2a

1 + ζ2
,

which indicates x ∈ Fe
2. Plugging it into trn

e (x) = a, we have

a =
tre

1(a) + ζ2a

1 + ζ2
.

It follows that a = tre
1(a), which has two solutions a = 0 or 1. That is, the rank

of quadratic form p(x) + q(ζx) is 2r = n − 1.

B. Quadratic form p(x) + q(ζx) + p(δx) + q(ζδx)

Let δ �= 1 ∈ F2n be a constant, we study the quadratic form p(x) + q(ζx) +
p(δx)+q(ζδx). For this quadratic form, by (4) and (6) the associated symplectic
form is

B(x, z) = trn
1 [z(δtrn

1 (δx) + trn
1 (x) + ζδtrn

e (ζδx) + ζtrn
e (ζx) + (1 + ζ2)(1 + δ2)x)].

Similarly, we need to count the solutions to

δtrn
1 (δx) + trn

1 (x) + ζδtrn
e (ζδx) + ζtrn

e (ζx) + (1 + ζ2)(1 + δ2)x = 0.

Let trn
e (x) = a and trn

e (δx) = b. Then

x =
δtre

1(b) + tre
1(a) + ζ2δb + ζ2a

(1 + ζ2)(1 + δ2)

=
ζ2a + tre

1(a) + δ(ζ2b + tre
1(b))

(1 + ζ2)(1 + δ2)
. (8)

Let X = trn
e ( 1

1+δ ). Plugging (8) into trn
e (x) = a and trn

e (δx) = b, we have

(ζ2a + tre
1(a) + ζ2b + tre

1(b))X
2 + (ζ2b + tre

1(b))X = a(ζ2 + 1), (9)

and

(ζ2a + tre
1(a) + ζ2b + tre

1(b))X
2 + (ζ2a + tre

1(a))X = tre
1(b) + b. (10)

There are three cases.
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1. If X = 0, then a = 0 and tre
1(b) = b. Obviously, there are two solutions

(a, b) = (0, 0) and (0, 1);
2. If X = 1, then tre

1(a) = a and b = 0. It is easy to see that there are two
solutions (a, b) = (0, 0) and (1, 0);

3. If X = c ∈ F2e \ {0, 1}, then

ζ2a + tre
1(a) + ζ2b + tre

1(b) =
a(ζ2 + 1) + b + tre

1(b)
c

. (11)

Replacing a+ tre
1(a)+ b+ tre

1(b) in (9) and (10) with the right-hand side of (11),
we get two equations, i.e.,

c(a + b) = a,

c(a + b + tre
1(a) + tre

1(b)) = b + tre
1(b).

We discuss them in four possibilities:

3.1 tre
1(a) = 0 and tre

1(b) = 0. Then

c(a + b) = a,

c(a + b) = b.

Immediately, a = b = 0.
3.2 tre

1(a) = 1 and tre
1(b) = 1. Then

c(a + b) = a,

c(a + b) = b + 1.

It follows that a = c and b = c + 1, which lead a contradiction with
tre

1(a) = tre
1(b) = 1.

3.3 tre
1(a) = 1 and tre

1(b) = 0. Then

c(a + b) = a,

c(a + b + 1) = b.

We have a = c2, b = c2 + c, and tre
1(c) = 1.

3.4 tre
1(a) = 0 and tre

1(b) = 1. Then

c(a + b) = a,

c(a + b + 1) = b + 1.

Immediately, a = c2 + c, b = c2 + 1, and tre
1(c) = 0.

Thus, for X = c ∈ F2e \ {0, 1}, the associated symplectic form B(x, z) has

1. Two solutions (a, b) = (0, 0) and (c2, c2 + c) when tre
1(c) = 1;

2. Two solutions (a, b) = (0, 0) and (c2 + c, c2 + 1) when tre
1(c) = 0.

In summary, the rank of the quadratic form p(x) + q(ζx) + p(δx) + q(ζδx) is
therefore 2r = n − 1.
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5 Proof of Theorem 5

We investigate the correlation function Ri,j(τ) between ui and uj in five cases.

Case 1. 0 ≤ i = j ≤ 2n and τ = 0:
In this trivial case, Ri,i(0) = 2n − 1.

Case 2. i = j = 2n and 0 < τ < 2n − 1:
Since u2n is an m-sequence, we have Ri,j(τ) = −1.

Case 3. 0 ≤ i �= j < 2n and τ = 0:
In this case, ui(t)+uj(t) = trn

1 ((ζi +ζj)αt), and therefore, Ri,j(0) = −1 again
from the auto-correlation property of m-sequence (trn

1 (αt), t = 0, 1, · · · , 2n − 2).

Case 4. 0 ≤ i < 2n and j = 2n (or (i = 2n and 0 ≤ j < 2n)):
For a fixed 0 ≤ τ < 2n − 1,

Ri,2n(τ) =
∑

x∈Fn
2

(−1)trn
1 ((ζi+δ)x)+p(x)+q(ζx) − 1,

where δ = ατ .
In Section 4, we proved that the rank of the quadratic form p(x) + q(ζx)

is n − 1. Consequently, it follows from Lemma 1 that the distribution of the
correlations for a fixed 0 ≤ τ < 2n − 1 is

Ri,2n(τ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1 + 2
n+1
2 , 2n−2 + 2

n−3
2 times

−1, 2n − 2n−1 times

−1 − 2
n+1
2 , 2n−2 − 2

n−3
2 times

As τ varies over the range 0 ≤ τ < 2n − 1, the distribution of the correlations
becomes

Ri,2n(τ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1 + 2
n+1
2 , (2n−2 + 2

n−3
2 )(2n − 1) times

−1, (2n − 2n−1)(2n − 1) times

−1 − 2
n+1
2 , (2n−2 − 2

n−3
2 )(2n − 1) times

The same distribution holds for R2n,j(τ), the case of i = 2n and 0 ≤ j < 2n.

Case 5. 0 ≤ i, j < 2n and 0 < τ < 2n − 1:
For a fixed 0 ≤ τ < 2n − 1, let δ = ατ . Then, the correlation function is

Ri,j(τ) =
∑

x∈F2n

(−1)trn
1 ((ζi+ζjδ)x)+p(x)+q(ζx)+p(δx)+q(ζδx) − 1.

In Section 4, it is shown that the rank of quadratic form p(x)+q(ζx)+p(δx)+
q(ζδx) is n−1. Similar to the distribution in Case 4, the correlation distribution
can be computed from Lemma 1 as
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Ri,j(τ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1 + 2
n+1
2 , (2n−2 + 2

n−3
2 )2n(2n − 2) times

−1, (2n − 2n−1)2n(2n − 2) times

−1 − 2
n+1
2 , (2n−2 − 2

n−3
2 )2n(2n − 2) times

where τ ranges over 0 < τ < 2n − 1 and i, j vary from 0 to 2n − 1, respectively.
Collecting the results of the above five cases, we obtain the distribution of the

correlation values of the sequences Family U .
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Abstract. A motivation for this paper is to find a practical mechanism
for generating permutations of a finite set of consecutive positive integers
so that the resultant spacings between originally consecutive numbers i
and i + i, are now different for each i. This is equivalent to finding com-
plete Latin squares. The ordered set of spacings in such a permutation
is called a sequencing. The set of partial sums of the terms in a sequenc-
ing is called a directed terrace. For lack of standard terminology, the
associated permutations here are called quick trickles.

This paper concerns methods of finding such sequencings, in part by
finding constraints on their existence, so that search time can be sub-
stantially reduced. A second approach is to represent a quick trickle
permutation as a directed graph. The sequencings then are represented
by chords of different lengths. Various methods can be used to rearrange
the chords and obtain additional sequencings and groups of quick trickle
permutations.

It is well known that complete Latin squares of size n × n can be
found if n is even but not if n is odd. This is equivalent to saying that
the group of integers (1, 2, 3, . . . , n) under the operation of multiplication
mod n is sequenceable if and only if n is even. A more general concept
is introduced which is termed quasi-sequenceable. This applies to both
even and odd sizes.

The application to block encryption, or the so-called substitution/
permutation system is briefly described. The net result is interround
mixing, deterministically generated under key control, and quickly re-
placeable with a new pattern of equal merit.

Currently, typical block encryption systems use algorithms which are
fixed and publicly known. The motivation here is to develop block en-
cryption systems using algorithms which are variable, secret, generated
and periodically changed by the key.

Keywords: Block encryption, Complete Latin square, Directed graph,
Directed terrace, Inter-round mixing, Quick trickle permutation,
Sequenceable group, Sequencing, S/P network.

1 Introduction

A motivation for this paper is to find a practical mechanism for generating per-
mutations of a finite set of consecutive positive integers so that the resultant
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spacings between originally consecutive numbers i and i + 1, are now different
for each i. This is equivalent to finding complete Latin squares, that is, n × n
arrays of numbers in which there are n distinct entries in each row and col-
umn, arranged such that the order or permutation in each row is different as
is the order in each column. There is considerable literature on Latin squares,
including orthogonal Latin squares with transversals plus generalizations and
variations, such as, Tuscan, Roman, Florentine and Vatican squares. (See refer-
ences 4. and 5.) However, this paper is primarily concerned with complete Latin
squares because of their applications to cryptography, specifically to the process
of interround mixing in block substitution systems.

Typically, a block substitution system consists of alternating steps of encrypt-
ing conveniently sized sub-blocks in individual substitution boxes (S-boxes) and
permuting the partly encrypted data. It is usually impractical to encrypt large
blocks in one step, and the individual S-boxes will, normally, have all different
tables. In some systems, the full set of individual bits are permuted after each
round; however, it is simpler and quicker to permute the partially encrypted
sub-blocks. For good mixing, each sub-block and its partially encrypted succes-
sor should pass through each S-box (Fig. 1).

The above example is for four rounds with four sub-blocks, 4×4 Latin squares,
but the pattern holds for any even number. The complete Latin square in Fig. 2
gives the most thorough mixing of the entries in the Latin square. This mixing
pattern could be specified by a table, as above, but this can be quite cumbersome
for large numbers of sub-blocks and rounds. A more efficient mechanism is to

S-BOX1 S-BOX2 S-BOX3 S-BOX4

PERMUTATION

S-BOX1 S-BOX2 S-BOX3 S-BOX4

PERMUTATION

Fig. 1. Typical S/P Networks for Block Encryption

A B C D

D A B C

C D A B

B C D A

R O UND S
1

2

3

4

A B C D

C A D B

B D A C

D C B A

R O UND S
1

2

3

4

Latin square - same neighbors, same successors

Complete Latin square - different neighbors, different successors

Fig. 2. Types of Latin squares
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find permutations which will directly generate these mixing patterns in the S/P
networks.

2 Quick Trickle Permutations

The complete Latin square in Fig. 2 can be derived by permuting the entries in
the first row, ABCD, by selected powers of a permutation in which the spacings
between integers which were adjacent in their natural order, are now all different.
Consider the permutation g = (1243). The spacings are from 1 to 2 a1 = 1, from
2 to 3 a2 = 2 and from 3 to 4 a3 = 3. If we now apply cumulative powers of the
permutation g = (1243) to the first row ABCD, we obtain:

g0 = (1)(2)(3)(4) ABCD row 1 or round 1
g1 = (1 2 4 3) CADB row 2 or round 2

g2 ◦ g1 = g3 = (1 3 4 2) BDAC row 3 or round 3
g3 ◦ g2 ◦ g1 = g2 = (1 4) (2 3) DCBA row 4 or round 4

where the exponents are added modulo 4 and where the symbol “◦” means
composition of the permutations. Note that the sequence of powers applied to g
is 0, 1, 3, 2 applied to the original S-box arrangement. This will be generalized in
successive sections. Further, because there does not appear to be any standard
name for permutations with distinct spacings, in this paper we will use the
following:

Definition 1. A quick trickle permutation is one in which the spacings ai from
the location of i to the location of i + 1 are all different.

More generally, consider an S/P block substitution system of n = 2s sub-blocks
and the same number of rounds. By definition, a quick trickle permutation will
be characterized by a set of n − 1 spacings, a1, · · · , an−1 where all are different.
For convenience, we include the trivial spacings of 1 to itself in the permutation,
that is, a0 ≡ 0. The set of integers {a0, a1, a2, · · · , an−1}, is, thus, an ordered
arrangement or permutation of the n integers {0, 1, 2, · · · , n − 1}, that is, the
integers modulo n. This is the group Zn with the group operation of addition
modulo n. We can also define

bj =
j∑

i=0

ai (mod n).

Clearly, bj is the net spacing in the quick trickle permutation from the initial
integer 1 to the integer j +1. This set of partial sums of integers mod n, in some
arbitrary order, will, generally, not be distinct; however, if the ai are defined
by a quick trickle permutation, the bi must be distinct, otherwise, two or more
numbers would occupy the same position relative to 1. Also for n ≡ 2s, since
the order of addition is immaterial:
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bn−1 =
n−1∑

i=0

ai =
n−1∑

i=0

i =
n(n − 1)

2
=

n(n − 2)
2

+
n

2
≡ s (mod n) (1)

This proves the following:

Proposition 1. In a quick trickle permutation of the integers (1, 2, · · · , n = 2s),
the net spacing from 1 to n is s.

If g is a quick trickle permutation and k is an integer where GCD(k, n) = 1, then
gk is also a quick trickle permutation. If not, there would be a pair of spacings
ai �= aj such that kai ≡ kaj (mod n), or k(ai − aj) = cn for some positive
integer c. Then, k divides c and ai − aj = c

kn > n which is not possible. Thus,
any quick trickle permutation defines a group of permutations in which those
without subcycles are also quick trickle permutations. For those powers yielding
permutations with cycles, all spacings ai are not defined, but those which are
defined, are all different.

3 Sequenceable Groups

The so-called quick trickle permutations are related to the concept of a sequence-
able group. See reference 3.

Definition 2. A finite group (G, ◦) with group elements a0 = e (the iden-
tity), a1, a2, · · · , an−1 and group operation “◦” is called sequenceable if the group
elements can be arranged in such an order that the partial sums (products)
b0 = a0, b1 = a0 ◦ a1, b2 = a0 ◦ a1 ◦ a2, etc., are all different. The ordered
set a0, a1, a2, · · · is called a sequencing, and the set of partial sums b0, b1, b2, · · ·
is called a directed terrace.

There is a fair amount of theory on the existence of sequenceable groups, but
for our purposes it suffices to know that the groups of integers modulo n, Zn, for
n even and addition modulo n as the group operation, are sequenceable. In the
case of quick trickle permutations, the ordered set of distinct spacings {ai} is a
sequencing. The fact that they are derived from a permutation guarantees that
the partial sums are a directed terrace.

4 Applications to Inter-Round Mixing

To apply this to block encryption where one typically uses an even number of
different block encryption tables, one arranges the tables in initial order and in
successive rounds permutes the order of the tables with a quick trickle permuta-
tion raised to successive powers where the exponents are a directed terrace. The
directed terrace need not be derived from the same quick trickle permutation
(QTP). These two sequences of integers can be part of the encryption key and
changed at the end of each code validity interval. In summary, the 2n integers
added to the encryption key will consist of n integers of a QTP and n integers
of a directed terrace.
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5 Quasi-Complete Latin Squares and Quasi-Sequencings

Complete Latin squares do not exist for all values of n. As shown in ref. 3, a
sufficient condition for the existence of a complete Latin square is that there
exists a sequenceable group of order n. Commutative (Abelian) sequenceable
groups of odd order do not exist. A substitute for the complete Latin square is
the quasi-complete Latin square.

Definition 3. Ref. 3: An n × n Latin square is said to be quasi-row-complete
if the pairs of adjacent elements which occur in the rows include each unordered
pair of distinct elements exactly twice. It is called quasi-column-complete if the
adjacent (succeeding or preceding) pairs of elements in the columns include each
unordered pair of distinct elements exactly twice. A Latin square is called quasi-
complete if it is both quasi-row-complete and quasi-column-complete.

6 Searching for Sequencings

Since any sequencing defines a quick trickle permutation and vice versa, one ap-
proach would be to examine arbitrary permutations and reject those not quali-
fying. This becomes a formidable task. There are n! permutations of the integers
1, 2, · · · , n; however, without loss of generality, one can specify the integer 1 in
the leftmost position, leaving (n − 1)! possibilities. For a quick trickle permu-
tation, the integer n always appears s = n

2 positions to the right of 1, leaving
(n − 2)! possibilities. The same is true for the directed terrace since the first
number is 0 and the last number is bn−1 = n

2 = s. There are other restric-
tions that reduce the number of possibilities. For example, in the sequencing
{a0 = 0, a1, a2, · · · , an−1}, there can be no subset of consecutive numbers which
sum to 0 mod n, which is the same as saying that no such subset is an unequal
partition of n, 2n, · · · , (s − 1)n. If there were such a partition, two of the partial
sums bi would be the same. Similarly, no partial sum bi = s mod n is possible
since s would not be the last term in the directed terrace. These rules are help-
ful in the sense of eliminating possible candidates for quick trickle permutations
but not in constructing them; however, one such sequence that is known to be
a directed terrace for any n = 2s is:

0, n − 1, 1, n − 2, 2, n − 3, 3, · · ·
See reference 1. The corresponding sequencing is:

0, n − 1, 2, n − 3, 4, n − 5, 6, · · ·
and the corresponding quick trickle permutation is:

g = (1, 3, 5, · · · , n − 1, n, n − 2, 2)

Another simple example of a quick trickle permutation is:

p = (1, 2, 4, 6, · · · , n, n − 1, n − 3, 3) (2)
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ai = i for i odd and ai = n− i for i even. For n = 2s, the ai are all different, and

since they are derived from a permutation, the bi =
i∑

j=0

aj must all be distinct.

Also, g = pn−1 = (1, 3, 5, · · · , n − 1, n, n − 2, · · · , 2).
As pointed out above, a prospective permutation of the integers 0, 1, 2, · · · , n−

1 with addition modulo n = 2s cannot be a sequencing unless no subset of
consecutive numbers is an unequal partition of a multiple of n, less than or
equal to (s − 1)n. It is tempting to examine as a candidate for spacings ai =
i, 0 ≤ i ≤ n − 1, that is, the possibility that {0, 1, 2, 3, · · · , n − 1} is a sequencing
under addition modulo n.

Proposition 2. For n = 2s, the sequence {0, 1, 2, · · · , n − 1} is a sequencing if
and only if n = 2k, k > 0.

Proof. For b > a, let {0, 1, 2, · · · , b} and {0, 1, 2, · · · , a} be two subsets of {0, 1, 2,
· · · , n − 1}. This latter complete sequence cannot be a sequencing if

b∑

i=0

i −
a∑

i=0

i = cn ≡ 0 mod n.

From Eq. (1), c ≤ s − 1, that is, n(n−2)
2 is the largest partial sum which is an

integral multiple of n.

b∑

i=0

i −
a∑

i=0

i =
b(b + 1)

2
− a(a + 1)

2
=

(b − a)(b + a + 1)
2

Let b−a = d ≤ n−1 and assume that for some c ≤ s−1, (b−a)(b+a+1) = 2cn,
then:

b + a + 1 =
2cn

d
and b =

cn

d
+

d − 1
2

(3)

If b is an integer less than n, {0, 1, 2, · · · , n − 1} is not a sequencing.

Case 1. n = 2k

d ≤ n − 1. If d is odd, and d | c, then cn
d ≥ n. If d � c, then cn

d is not an integer
but d−1

2 is an integer. Thus, b is not an integer. If d is even, then d−1
2 can be

expressed as an integer + 1
2 ; however, since d < n, either cn

d is an integer or an
integer plus a fraction with an odd denominator. Again, b is not an integer and
so {0, 1, 2, · · · , n − 1} is a sequencing.
Case 2. n = e2l where e is odd, 3 ≤ e ≤ n

2 , l ≥ 1, n ≥ 6.
Let d = e and c = 1. Then b = cn

d + d−1
2 = 2l + e−1

2 which is an integer.
We can write:

2l = 2 + α for α ≥ 0. e = 2 + β for β ≥ 1
(2 + α) + (2 + β) = 4 + α + β

(2 + α)(2 + β) = 4 + 2α + 2β + αβ > 4 + α + β
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Thus:
b = 2l +

e − 1
2

< 2l + e < e2l = n

so that {0, 1, 2, · · · , n − 1} is not a sequencing.

Another aid in generating quick trickle permutations is to note that if {a0, a1,
a2, · · · , an−1} is a sequencing, then so is {a0, an−1, an−2, · · · , a2, a1}; and, con-
versely, if one is not, the the other is not. This is simply because addition modulo

n is associative:
c∑

i=b

ai =
b∑

i=c

ai.

There are some patterns which occur in a group of permutations. Since n =
2s, ai = s for some index i in the sequencing corresponding to a quick trickle
permutation g. For k < n and GCD (k, n) = 1 the permutation and its kth
power can be written:

g = (1, c1, c2, · · · , ci, · · · , cn−1)
gk = (1, d1, d2, · · · , di, · · · , dn−1)

ck = d1, c2k = d2 etc. In general, if ci = dl then kl ≡ i mod n, and similarly if
cj = dm.

The spacing between pairs of numbers ci → cj , is (j − i) in g and for dl →
dm is (m − l) in gk. (j − i) ≡ (m − l)k mod n. In particular, the spacing ai

from i → i + 1 in g becomes a
′

i in gk where ai ≡ ka
′

i mod n. Starting with
the basic permutation g, and the associated sequencing {0, a1, a2, · · · , an−1} the
corresponding sequencing in gk is {0, ta1, ta2, · · · , tan−1} where kt ≡ 1 mod n,
that is, t < n is the integer such that (gk)t ≡ g mod n. t is relatively prime to
n. t is necessarily odd; so t = 2d + 1 where d ≥ 0. Consider the number in the
sequencing {ai}, aj = s = n

2 . a
′

j = taj = (2d + 1)n
2 = dn + n

2 ≡ s mod n. This
proves that following:

Proposition 3. In a group of quick trickle permutations, the sequencings (cor-
responding to maximal permutations) all have aj = n

2 in the same position.

Definition. A sequencing corresponding to a quick trickle permutation for which
as = s, is called symmetric if ai + an−i ≡ 0 mod n. If ai + as+i ≡ 0 mod n, it is
called antisymmetric.

Note that ai + an−i ≡ 0 mod n is not a sufficient condition for a sequencing.
As shown in Prop. 2, although 0, 1, 2, · · · , n

2 , · · · , n−1 has this property, it is not
a sequencing if n �= 2k.

Proposition 4. (I) In the symmetric case, the sequencing corresponding to the
inverse permutation is

{0, an−1, · · · , as+1, as, as−1, · · · , a2, a1}.

(II) In the antisymmetric case, the sequencing corresponding to the inverse per-
mutation is:

{0, as+1, · · · , an−1, as, a1, · · · , as−1}.
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Proof. The sequencing corresponding to the inverse, as shown in the proof of
Prop. 3, is {0, (n− 1)a1, (n − 1)a2, · · · , (n − 1)an−1}. In (I) a1 + an−1 = na1 ≡ 0
mod n, so (n − 1)a1 = an−1 etc. In (II) a1 + as+1 = na1 ≡ 0 mod n, so
(n − 1)a1 = as+1 etc.

7 Graphic Representation of Quick Trickle Permutations

A quick trickle permutation can be represented as a directed graph. For a per-
mutation of order n = 2s, the vertices of a regular n-side polygon, in some order,
represent the permutation. Chords connecting numbers i to i + 1, represent the
spacings with values assigned as the number of edges subtended to the left, with
respect to the direction of travel. By definition, for a quick trickle permutation,
these chord lengths in terms of edges subtended must all be different. Fig. 3
is an example for n = 8 for a permutation of the form of Eq. (2) in Section
6. In these graphs, there is a single path from each vertex to every successor.
Clearly, if we can rearrange the chords, all of different length, so that we obtain
another directed graph with unique paths, it will represent another quick trickle
permutation.

1

23

5 4

67

8

8n =

Fig. 3. 8g1 = (1 2 4 6 8 7 5 3)

Using the convention mentioned above, the chord lengths or spacings marked
by the arrow are, respectively, {0 1 6 3 4 5 2 7}. This is the sequencing cor-
responding to the permutation 8g1. Clearly, any transformation to this graph
which yields the same chord lengths will represent another quick trickle permu-
tation and sequencing; for example, we can reverse the order of the chords or
sequencing by following a symmetric, counterclockwise path like that shown in
Fig. 4

In this case, we have obtained the inverse of the permutation in Fig. 3. The
corresponding sequencing is: {0 7 2 5 4 3 6 1}, and the existence of the directed
terrace is guaranteed by the fact that the above sequencing is the set of spacings
in a permutation.

If we rotate the chord of length 4 in Fig. 3 by 90
o
, we obtain the new directed

graph in Fig. 5.
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1

2 3

54

6 7

8

8n =

Fig. 4. 8g
−1
1 = 8g

7
1 = (1 3 5 7 8 6 4 2)

5

67

1 8

23

4

8n =

Fig. 5. 8g2 = (1 7 5 6 8 2 4 3)

In this case, the chord lengths, in order, or the sequencing is: {0 5 2 7 4 1 6 3}.
Note that this represents a rotation of blocks around n

2 = 4 in the sequencing in
Fig. 3, i.e.:

1 6 3 5 2 7 5 2 7 1 6 30 4 0 4

8g2 is not a power of 8g1 and, thus, a second group of quick trickle permuta-
tions is determined. 8g

5
2 = (1 2 5 3 8 7 4 6) and 8g1 = (1 2 4 6 8 7 5 3), generate

two disjoint groups of quick trickle permutations.
The above example used a symmetric sequencing and generated two groups

of quick trickle permutations. Next we consider a case in which the sequencing
is asymmetric. The QTP is 8hi = (1 2 7 4 8 6 5 3) and the corresponding
sequencing is {1 6 4 3 7 5 2}.

This quick trickle permutation can be used to generate other groups of per-
mutations. First of all, the diameter extending from vertex 3 to 4 in Fig. 6 can
be rotated 45

o
to connect the original vertices 1 and 8. The result is shown in

Fig. 7.
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23

5

4

1

6

8

7

Fig. 6. Complete modification to Fig. 3. 8h1 = (1 2 7 4 8 6 5 3), {ai} =
{0 1 6 4 3 7 5 2}.

78

2

1

6

3

5

4

Fig. 7. Modification of Fig. 6 by rotation of the diameter. 8h3 =
(1 5 3 2 8 6 7 4), {ai} = {0 3 7 5 2 4 1 6}.

This is independent of the previous quick trickle permutations in the sense
that it is not a power of any of them. As shown in Fig. 6, 8h1 can also be modified
by reversing the order of the corresponding sequencing. This is shown in Fig.8.

67

2

3

8

5

1

4

Fig. 8. Sequencing reversed from Fig. 6. 8h4 = (1 5 2 7 8 6 4 3), {ai} =
{0 2 5 7 3 4 6 1}.

Once again, this is not a power of a previous quick trickle permutation. Finally,
we can rotate the diameter, leaving the other chords unchanged to obtain the
directed graph in Fig. 9.

If one uses only modifications of a directed graph, that is, mirror image and
rotation of the diameter or chord subtending four edges, then permutations
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12

5

6

3

8

4

7

Fig. 9. Modification of Fig. 8. 8h2 = (1 7 6 4 8 5 2 3), {ai} = {0 6 1 4 2 5 7 3}.

8h1,8 h2,8 h3, and 8h4 form an equivalence class of four groups, while 8g1 and 8g2

form an equivalence class of two groups.
There is a clear distinction between the directed graphs of Fig. 3 and 4 on

the one hand and those in Fig. 6, 7 and 8 on the other hand. The former are
symmetric about the diameter or chord of length s = n

2 = 4; the latter are
asymmetric around this diameter. The corresponding sequencings, omitting the
initial zero, are similarly symmetric or asymmetric. Antisymmetric sequencings
occur only for n ≥ 10. As shown above, interchanging the blocks minus the zero,
to the left and right of s in the sequencing produces another sequencing.

Simultaneously, reversing the order of these two blocks also produces another
sequencing. This is shown schematically as follows:

0{block L}s{block R}
0{block L−1}s{block R−1}
0{block R}s{block L}
0{block R−1}s{block L−1}
where block L = {a1, a2, . . . , ak}, block L−1 = {ak, . . . , a2, a1}

block R = {ak+2, . . . , an−1}, block R−1 = {an−1, . . . , ak+2}
and s is in position k + 1.

In the symmetric case, k + 1 = s, that is s is in the middle of the nonzero
numbers {ai} with block of s − 1 numbers in each of the blocks to the left
and right of s. In that case, the second sequencing is in the reverse order of
the first and the corresponding permutation is the inverse of the permutation
corresponding to the first sequencing. There is a similar correspondence between
the third and fourth sequencings.

A symmetric quick trickle permutation generates an equivalence class of two
permutation groups. In the antisymmetric case, the left and right blocks respec-
tive to s in the sequencing are interchanged in the sequencing corresponding
to the inverse permutation (see Prop. 4). In the asymmetric case, inverting the
order of the numbers within the left and right blocks does not reverse the order
of the sequencing and does not, correspondingly, generate the inverse of the first
permutation. An asymmetric quick trickle permutation generates an equivalence
class of four permutation groups.
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8 Some Remarks and Observations

Searching for quick trickle permutations and sequencings is a first olive out of
the bottle problem, that is, finding one yields two to four groups as shown above.
Some cut and try processes are reasonably fruitful, such as, making minor modi-
fications including expansion of existing permutations, sequencings and directed
graphs. However, one deterministic method of generating symmetric QTP’s is
extrapolation, that is doubling a sequencing by using a size n sequencing as the
left (or right) side of a new size 2n sequencing.

The number of groups of QTP’s and sequencings for n10 is shown below. The
ordinate is the block size n = 2s. The abscissa is the location of ai = s in the
sequencing relative to the midpoint of the set of n − 1 nonzero numbers. This is
the same as the location of the diameter in the directed graph.

4n =
6n =
8n =
10n = 0 12 8 8 16 8 8 12 0

4s − 3s − 2s − 1s − s 1s + 2s + 3s + 4s +

0 0 2 2 2 0 0

0 0 2 0 0

0 1 0

Fig. 10.
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Ŕıo Piedras Campus
moreno@uprr.pr

2 High Performance Computing facility
University of Puerto Rico
jose.ortiz@hpcf.upr.edu

Abstract. Digital watermarking applications require constructions of
double-periodic matrices with good correlations. More specifically we
need as many matrix sequences as possible with both good auto- and
cross-correlation. Furthermore it is necessary to have double-periodic
sequences with as many dots as possible.

We have written this paper with the specific intention of provid-
ing a theoretical framework for constructions for digital watermarking
applications.

In this paper we present a method that increases the number of se-
quences, and another that increases the number of ones keeping the corre-
lation good and double-periodic. Finally we combine both methods
producing families of double-periodic arrays with good correlation and
many dots. The method of increasing the number of sequences is due to
Moreno, Omrani and Maric. The method to increase the number of dots
was started by Nguyen, Lázló and Massey, developed by Moreno, Zhang,
Kumar and Zinoviev, and further developed by Tirkel and Hall. The very
nice application to digital watermarking is due to Tirkel and Hall.

Finally we obtain two new constructions of Optical Orthogonal Codes:
Construction A which produces codes with parameters (n, ω, λ) =

(p(p − 1), p2−1
2 , [ p(p+1)

4 ]) and Construction B which produces families

of code with parameters (n, ω, λ) = (p2(p−1), p2−1
2 , [ p(p+1)

4 ]) and family
size p + 1.

Keywords: double-periodic, correlation, watermark, sequences, matrix,
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1 Background

Sequences with good auto- and cross-correlation have been studied by our group
for their applications in frequency hopping radar and sonar, and communica-
tions, and more recently in digital watermarking.
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Costas and sonar sequences were respectively introduced in [3] and [5] to
deal with the following fundamental problem:

“We have an object which is moving towards (or away from) us and we want
to determine the distance and velocity of that object.”

The solution to the problem makes use of the Doppler effect. Doppler observed
that when a signal hits a moving object its frequency changes in direct proportion
to the velocity of the moving object relative to the observer. In other words, if
the observer sends out a signal towards a moving target, the change between
the frequency of the outgoing and that of the returning signal will allow him to
determine the velocity of the target, and the time it took to make the round trip
will allow him to determine the distance.

In a frequency hopping radar or sonar system, the signal consists of one or
more frequencies being chosen from a set {f1, f2, . . . , fm} of available frequencies,
for transmission at each of a set of {t1, t2, . . . , tn} of consecutive time intervals.
For modeling purposes, it is reasonable to consider the situation in which m = n,
and where

{f1, f2, . . . , fn} = {t1, t2, . . . , tn} = {1, 2, . . . , n}
(we will call this last m = n case, a Costas type, and the general case sonar
type).

Such a Costas signal is conveniently represented by a n×n permutation matrix
A, where the n rows correspond to the n frequencies, the n columns correspond
to the n time intervals, and the entry aij equals 1 if and only if frequency i is
transmitted in time interval j. (Otherwise, aij = 0)

When this signal is reflected from the target and comes back to the observer,
it is shifted in both time and frequency, and from the amounts of these shifts,
both range and velocity are determined. The observer finds the amounts of these
shifts by comparing all shifts (in both time and frequency) of a replica of the
transmitted signal with the actual received signal, and finding for which com-
bination of time shift and frequency shift the coincidence is greater. This may
be thought of as counting the number of coincidences between 1’s in the matrix
A = (aij) with 1’s in a shifted version A∗ of A, in which all entries have been
shifted r units to the right (r is negative if there is a shift to the left), and s units
upward (s is negative if the shift is downward). The number of such coincidences,
C(r, s), is the two-dimensional auto-correlation function between A and A∗, and
satisfies the following conditions:

C(0, 0) = n

0 ≤ C(r, s) ≤ n except for r = s = 0

(This conforms to the assumption that the signal is 0 outside the intervals 1 ≤
f ≤ nand1 ≤ t ≤ n)

If we have another Costas type of signal represented by a matrix B = (bij),
we can similarly define the two-dimensional cross-correlation function by substi-
tuting A∗ by B∗ in the above definition.
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In the real world, the returning signal is always noisy. The two-dimensional
auto-correlation function, C(r, s), is also called the ambiguity function in radar
and sonar literature, and should be thought of as the total “coincidence” between
the actual returning noisy signal and the shift of the ideal transmitted signal
by r units in time and s units in frequency. Among the 2n2

matrices of 0’s
and 1’s of order n, there are n! permutation matrices, and some of these are
not very good as signal patterns for radar and sonar. For example, the n × n
identity matrix In can be shifted one unit up and one unit left, and will then
produce n − 1 coincidences with the original matrix. For large values of n and a
noisy environment, the signal pattern In would most certainly produce spurious
targets, shifted an equal number of units in both time and frequency from the
real target.

At a minimum, there is a shift of A = (aij) which will make any of the n 1’s
land on any of the n − 1 remaining 1’s, so we know that

min C(r, s) = 1

max C(r, s) ≥ 1

for all “codes”(r, s) �= (0, 0)

where C(r, s) is the ideal ambiguity function of the permutation matrix itself.
Consequently J.P. Costas [3] defined the ideal n×n permutation matrices (which
we will call here Costas sequences) as those for which

max C(r, s) = 1 when (r, s) �= (0, 0)

By hand computation, he found examples of such matrices for all n ≤ 12, but
was unable to find an example for n = 13, and was tempted to conclude that
these patterns “die out” beyond n = 12.

In the general sonar case, n signals are sent out with frequencies ranging
from 1 to m, at times ranging from 1 to n. Once the whole pattern of signals
has returned, the velocity and the distance of the object can be determined as
mentioned before. For sonars you must have exactly a 1 in every column but the
rows can have multiple 1’s or they can be empty of 1’s. The problem in sonars
(see [7]) is for any n obtain the largest possible m.

It has been proven in [4] that for n > 3 there are no two different Costas
sequences with the same ideal property in their cross-correlation as that they
have in their auto-correlation. Since for the case of multiple targets we need sets
of sequences with good auto- and cross-correlation properties we had therefore
settled for constructing sets of sequences with nearly ideal properties, or in other
words cross-correlation 2.

In spread spectrum communications the data sent in a communication channel
is spread to avoid its interception and channel jamming; and in modern commu-
nications like CDMA for multiple access in wireless and optical communication.
Using codes with good auto- and cross-correlation a message sent in a communi-
cation channel can then be easily recovered in the other side of communication
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and furthermore using codes with good cross-correlation allows communication
of multiple users limiting signal interference.

Recently sequences with good auto- and cross-correlation have been used in
the area of digital watermarking because they make watermarks more difficult
to detect, damage or remove from a digital medium. The idea is similar to the
spread spectrum communications where a secret message is spread into a channel
in order to make it more difficult to be intercepted or removed.

A watermark is an array or a sum of arrays that can carry information. This
array is added to a medium in order to make it difficult to perceive. The wa-
termark is recovered by calculating the watermark correlation with the water-
marked medium. Families of arrays with perfect or near to perfect auto- and
cross-correlation allow the addition of multiple arrays to increase information
capacity (or multiple users) and watermark security.

In previous work, families of Costas and sonar arrays have been studied in
the area of digital watermarking. The Moreno-Maric construction [12], which
generates families of double periodic arrays, was used by Tirkel and Hall in
particular because of their near to perfect correlation (2) and the size of its
families. In order for watermarks to be more effective it must have many dots.
Also it is necessary to have as many sequences with low cross-correlation as
possible to combine them and increase the watermark information capacity. The
method of using periodic-sequences to replace columns of matrices in order to
increase the number of dots in double-periodic sequences was introduced in [10],
was previously used by our group [8] and also used by Tirkel and Hall [11] in
the area of watermarking. Recently Moreno, Omrani and Maric [9] presented
a new construction of double periodic sequences with perfect auto- and cross-
correlation. In this work we will use this new construction to generate families
of matrices that can be used for digital watermarking.

2 Method to Increase the Number of Sequences without
Increasing the Original Correlation Value

Moreno, Omrani and Maric showed how to construct new families of sonars and
extended Costas arrays, from a Welch Costas array (p× (p−1)), with auto- and
cross-correlation 1. The Welch Costas arrays are constructed as follows:

Welch Construction. Let α be a primitive root of an odd prime p.
Then the array with

αk,j = 1, 1 ≤ k, j ≤ p − 1

if and only if
j ≡ αk(mod p), 1 ≤ k ≤ p − 1,

otherwise αk,j = 0, is a Costas array.

This construction is the first construction of multiple target sonars with perfect
auto- and cross-correlation properties. Multiple target arrays are families of ar-
rays used in radar and sonar that are sent to different targets. When the echoes



86 O. Moreno and J. Ortiz-Ubarri

are received the low cross-correlation of the arrays is used to distinguish the
distance and velocity of each target. In the case of watermarking we call these
arrays multiple user arrays, because instead of using the arrays to distinguish
targets we use them to distinguish users.

2.1 OOC, DDS, and Double Periodic Arrays of Families

An (n, ω, λ) Optical Orthogonal Code (OOC) C where 1 ≤ λ ≤ ω ≤ n, is a
family of {0,1}-sequences of length n and Hamming weight ω satisfying:

n−1∑

k=0

x(k)y(k ⊕n τ) ≤ λ (1)

whenever either x �= y or τ �= 0. We will refer to λ as the maximum correlation
parameter, and Φ as the family size.

A (k, v)-Distinct Difference Set (DDS) [1] is a set {ci|0 ≤ i ≤ k − 1} of
distinct integers such that the k(k−1) differences ci −cj where i �= j are distinct
modulo v.

By a (v, k, t)-DDS, we mean a family (Bi|i ∈ I, t = |I|) of subsets of Zv each of
cardinality k, such that among the tk(k−1) differences (a−b|a, b ∈ Bi; a �= b; i ∈
I) each nonzero element g ∈ Zv occurs at most once. This notion of a (v, k, t)-
DDS is a more recent generalization of the earlier concept of a (k, v)-DDS. A
(k, v)-DDS is a (v, k, t)-DDS with parameter t = 1.

Lemma 1. There is a one to one onto correspondence between the set of (n, ω, λ)-
OOCs and the set of (v, k, t)-DDSs when λ = 1 with n = v, k = ω and Φ(n, ω, 1) =
t, and Φ(n, ω, 1) is the family size of the OOCs.

Proof. The incidence vectors associated to the subsets comprising a (v, k, t)-DDS
can be seen to form an (n, ω, λ)-OOC of size t with parameters n = v, w = k,
and λ = 1. Conversely, given an OOC and a maximal set of cyclically distinct
representatives drawn from the code, one obtains a DDS by considering the
support of these vectors. Thus, the concept of (v, k, t)-DDS is precisely the same
as that of an OOC with λ = 1.

Let A = [A(i, j)] and B = [B(i, j)] be r × s matrices having 0,1 entries where r
and s are relatively prime. We now have the following definition:

Definition 1. The double-periodic cross-correlation between A and B is an in-
teger valued function for a change of value (a, b) a in the row and b in the column.
In other words the function varies for all (a, b) a less than the first value and
b less than the second value of the double periodicity. The function C(a, b) is a
integer function defined as follows:

r−1∑

i=0

s−1∑

j=0

A(i ⊕r α, j ⊕s τ)B(i, j) ≤ C(a, b) (2)
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for any α ≤ r, τ ≤ s, where ⊕m denotes addition modulo m the smallest such
C(a, b) is the correlation. Auto-correlation is the same with A = B. Let a(.) and
b(.) be the sequences of length rs associated with the matrices A and B respec-
tively via the Chinese Remainder Theorem, a(L) = A(L( mod r), L( mod s))
and similarly b(L) = B(L( mod r), L( mod s)) for all L, 0 ≤ L ≤ rs − 1.

Definition 2. Bound on the correlation.

max C(a, b) ≤ λ when (a, b) �= (0, 0) (3)

From the previous definitions we obtain the following theorem:

Theorem 1. The collection of one-dimensional periodic auto- and cross-
correlation values of a family of sequences of length rs is precisely the same
as the set of two dimensional double-periodic auto- and cross-correlation values
of r × s matrices associated with these sequences via the residue map, whenever
r and s are relatively prime.

Corollary 1. The concept of an OOC with auto- and cross-correlation λ is
the same as that of a double-periodic multi-target arrays with auto- and cross-
correlation λ.

1) MZKZ Construction A: When m is a divisor of p−1, m|(p−1), and p is a prime,
the construction of an (n = mp, w = m, λ = 1), Φ = p−1

m OOC (Construction A
in Moreno et al [8]) yields a (v = mp, k = m, p−1

m )-DDS for any m|(p − 1). This
construction is optimal with respect to the Johnson Bound [6] on the cardinality
of a constant weight binary code when p > 3 and m = p − 1. The construction
is given for m = p − 1 in the following:

If we choose any degree one polynomial f(x) over Fp, and fill out the elements
of a p × (p − 1) matrix M with the following rule:

M(i, j) =
{

1, if f(αj) = p − 1 − i
0, otherwise (4)

where α is a primitive element of Fp, then the resulting M matrix has one 1
per column and has the double-periodic auto-correlation property. If we apply
the Chinese Remainder Theorem to the matrix M we will end up with an OOC
sequence μ of length p(p − 1):

μ(l) = M(l mod (p), l mod (p − 1)) (5)

2) A New Family of OOC’s: M.J. Colbourn and C.J. Colbourn [2] proposed two
recursive constructions for cyclic BIBD’s. Their Construction A was generalized
[13] to form DDS recursively. The following is an easy generalization of Colbourn
construction B:

ConstructionB: Given a (vk, k, t)-DDS, (vk = 0( mod k)) if gcd(r, (k−1)!)=1,
then a (vkr, k, rt)-DDS may be constructed as follows. For each D = {0, d1, . . . ,
dk−1}, take the r difference sets {0, d1 + ikv, d2 + 2ikv, . . . , dk−1 + (k − 1)ikv},
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0 ≤ i < r, with addition performed modulo vkr. If furthermore, there exists
an (rk, k, t′)-DDS D′, then a (vkr, k, rt + t′)-DDS can be constructed by adding
the t′ difference sets {0, vs1, . . . , vsk−1} for each D′

i = {0, s1, . . . , sk−1} of D′ =
{D′

i|1 ≤ i ≤ t′}.
A proof of the above is not included (the proof is similar to the one in [2]).

In Lemma 2 we will prove the special case that interests us in this paper.

Construction CMZKZ: Applying construction B recursively to MZKZ family
A construction, we obtain a (pi(p−1), p−1, 1)-OOC of size pi−1+pi−2+· · ·+p+1.
This OOC is not optimal with respect to the Johnson Bound [6].

Lemma 2. In the (pi(p−1), p−1, 1)-OOC of the above construction, all residues
occur exactly once except multiples of p − 1 and pi.

Proof. In the base OOC all the residues occur except multiples of p and p − 1.
Now applying the recursive construction to the (p(p − 1), p − 1, 1) base OOC, in
the resulting (p2(p−1), p−1, 1)-OOC all the multiples of residues present in the
base OOC will be present in addition to the multiples of p times the residues
of the base OOC. So in the new OOC the multiples of p − 1 do not occur. In
addition since the multiples of p were not present in the base residues so in the
new OOC the multiples of p2 also do not occur.

We can use the same proof inductively to prove that in (pi(p − 1), p − 1, 1) all
the residues occur exactly once except the multiples of pi and p − 1.

2.2 Two New Multiple Target Families for Extended Costas and for
Sonar Arrays

Using the Chinese Reminder Theorem and Theorem 1 of Section 2.1, since pi is
relatively prime to p − 1 we obtain:

Construction 1(V): From Section 2.1 we obtain a family of p2 × (p − 1) sonar
arrays with family size of p + 1 with auto- and cross-correlation 1.

Construction 2(V): A family of pi × (p − 1) sonar arrays with family size of
pi−1 + pi−2 + · · · + 1 with auto- and cross-correlation 1.

Construction 1(H): From section 2.1 we obtain a family of (p−1)×p2 extended
Costas arrays with family size of p + 1 with auto- and cross-correlation 1.

Construction 2(H): A family of (p − 1) × (pi) extended Costas arrays with
family size of pi−1 + pi−2 + · · · + 1 with auto- and cross-correlation 1.

Example 1. An example to generate the family of Construction 1(V). Start with
a Welch array of Figure 1 2,4,3,1. Now notice that (0,2) corresponds to 12 using
the Chinese Remainder Theorem since 12 ≡ 0 mod (4) and 12 = 2 mod (5).
Also (1, 4) → 9, (2, 3) → 18, and (3, 1) → 11. Where in (x, y) → z, x is the value
of the column, y is the value of the row, and z is the Chinese Remainder for
(x, y). Applying the Chinese Reminder Theorem to the Welch array we obtain
the OOC D:

D = {9, 11, 12, 18}
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Fig. 1. 5x4 Welch Costas

which is equivalent to D′:

D′ = {9, 11, 12, 18}

From D′ using our construction B we obtain the 6 arrays D1, D2, D3, D4, D5 and
D6 as follows: (See section 2.1):

D1 = {0, 2, 3, 9} for i = 0

D2 = {0, 22, 43, 69} for i = 1

D3 = {0, 29, 42, 83} for i = 2

D4 = {0, 23, 62, 89} for i = 3

D5 = {0, 49, 63, 82} for i = 4

Now we multiply D′ by 5:

D6 = {0, 10, 15, 45}

Finally apply the Chinese Reminder Theorem again to each Di to construct
the family of 25 × 4 sonars arrays of size 6. I.E. To construct sonar Si for each
element d ∈ Di, calculate s = (d mod 4, d mod 25)) ∈ Si. See Figure 2.

3 Method to Increase the Number of Dots

Previous work [10] [8] [11] describes how to increase the number of dots in a
double-periodic matrix sequence using periodic shift sequences. Tirkel and Hall
applied this method with the Moreno-Maric construction [12] to create new
matrices with good auto- and cross-correlation.

Method A: consists in replacing the columns of a double-periodic matrix W
with a cyclically shifted periodic sequence s with the size of the columns of the
matrix (See Figure 3(b)). For each column j in W , find the row i where Wi,j = 1,
construct s′ such that s′ is equal to s cyclically shifted i units, and replace the
column j with s′. Figure 3 is an example of a double-periodic Welch 7 × 6
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Fig. 2. 25x4 Moreno-Omrani-Maric sonars family

matrix sequence (0, 3), (1, 2), (2, 6), (3, 4), (4, 5), (6, 1) with the columns replaced
by a binary m-sequence (0,0,1,1,1,0,1) of size 7.

Proof of the following theorem can be done following the techniques used by
Nguyen, Lázló and Massey in [10].

Theorem 2. Method A applied to a Welch array of size p(p−1) using a Legendre
sequence as a column produces OOCs with parameters (n, ω, λ) = (p(p − 1),
p2−1

2 , [p(p+1)
4 ]). These codes are asymptotically optimum.

4 New Matrix Construction for Watermarking

In section 2 we showed how to construct families of double-periodic sequences
with perfect correlation. This property is very useful in digital watermarking
because it reduces the number of false positives in watermark detection. In sec-
tion 3 we explained how to increase the number of dots in a double-periodic
sequence. In the next subsection we will use the Moreno-Omrani-Maric family
construction to construct new families of matrices which are more efficient for
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watermarking by increasing the number of dots in the Moreno-Omrani-Maric
construction.

4.1 Method to Increase the Number of Dots and the Number of
Sequences with Optimal Correlation

We construct a family of matrices from a Welch Costas array using column
sequences and applying the Moreno-Omrani-Maric construction.

Method B: First we generate a Welch Costas array, then we replace the columns
with a suitable cyclically shifted periodic sequence to increase the number of dots
(filled pixels in images) in the matrix, and finally we apply the Moreno-Omrani-
Maric construction to generate the new family of size p + 1. (See example 2).

(a) 7x6 Welch array (b) 7x6 Welch array with
binary column sequence

(c) 7x6 Welch array with
column sequence

Fig. 3. 7x6 Welch array with and w/o column sequence

Example 2. Start with the Welch array of Figure 3(a) with points (0, 3), (1, 2),
(2, 6), (3, 4), (4, 5) and (5, 1). Replace the columns of the matrix in that figure
with the periodic sequence 0, 0, 1, 1, 1, 0, 1 which is a binary m-sequence with
auto-correlation 2 (See Figure 3(b)) to form the matrix in figure 3(c).
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Now apply the Moreno-Omrani-Maric construction to the new matrix of
size p × (p − 1). The Chinese Reminder for the points in the new matrix are
(0, 0) → 0, (0, 1) → 36, (0, 4) → 18, (0, 6) → 6, (1, 0) → 7, (1, 1) → 1, (1, 2) →
37, (1, 5) → 19, (2, 1)→ 8,(2, 3) → 38,(2, 4)→ 32,(2, 5)→ 26, (3, 0) → 21,(3, 3)→
3, (3, 5) → 33,(3, 6)→ 27,(4, 2)→ 16,(4, 4)→ 4, (4, 5) → 40, (4, 6) → 34, (5, 1) →
29, (5, 2) → 23, (5, 3) → 17, (5, 6) → 41.

From the Chinese Reminder Theorem we obtain D′:

D′ = {0, 1, 3, 4, 6, 7, 8, 16, 17, 18, 19, 21, 23, 26, 27, 29, 32, 33, 34,

36, 37, 38, 40, 41}
Now following the Moreno-Omrani-Maric construction we obtain from D′:

D1 = {0, 1, 3, 4, 6, 7, 8, 16, 17, 18, 19, 21, 23, 26, 27, 29, 32, 33, 34,

36, 37, 38, 40, 41}
D2 = {0, 16, 27, 38, 43, 59, 71, 82, 87, 102, 116, 125, 130, 145, 159, 174, 189, 202, 217,

233, 246, 260, 278, 289}
D3 = {0, 16, 27, 38, 48, 63, 76, 85, 101, 113, 124, 133, 149, 162, 171, 186, 200, 209, 218,

236, 247, 256, 271, 285}
D4 = {0, 16, 27, 38, 49, 65, 78, 88, 103, 117, 127, 143, 155, 166, 176, 194, 205, 216, 231,

244, 255, 270, 284, 293}
D5 = {0, 16, 27, 38, 45, 60, 74, 83, 90, 105, 118, 134, 152, 163, 169, 185, 197, 208, 214,

229, 243, 259, 275, 288}
D6 = {0, 16, 27, 38, 46, 61, 75, 92, 110, 121, 129, 144, 158, 167, 175, 191, 204, 211, 227,

239, 250, 258, 273, 286}
D7 = {0, 16, 27, 38, 50, 68, 79, 91, 107, 120, 132, 147, 160, 172, 187, 201, 213, 228, 242,

251, 253, 269, 281, 292}

And multiplying D′ by 7:

D8={0, 7, 21, 28, 42, 49, 56, 112, 119, 126, 133, 147, 161, 182, 189, 203, 224, 231, 238,

252, 259, 266, 280, 287}
Finaly apply the Chinese Reminder Theorem again to convert them to 6 × 49

matrices. (see Figure 4)

Theorem 3. Method B applied to a Welch array of size p(p−1) using a Legendre
sequence as a column produces OOCs with parameters (n, ω, λ) = (p2(p − 1),
p2−1

2 , [p(p+1)
4 ]) and family size p + 1.

In our example 2 we construct code sequences with (n, ω, λ) = (6 × 49, 24, 14).
These families of matrices can be used in digital watermarking because of their
good cross-correlation. In our example the cross-correlation is 14 because of
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Fig. 4. 6x49 New matrix construction from Welch array 7x6 (rotated 90 degrees to the
right)

the choice of the column sequence which auto-correlation is 2. The addition of
arrays in the same family allows the watermark to carry more information. In
the case of images the use of other methods like interlacing [12] can be also
applied to extend families of matrices but increasing the correlation values. Also
the selection of the column sequence and its correlation affects the new matrices’
cross-correlation.

5 Conclusion

The Moreno-Omrani-Maric construction generates families with perfect auto-
and cross-correlation. The matrices generated by this construction have few
dots, and we showed a method to increase the number of dots in the matri-
ces making them more effective for watermarking. We take advantage of the
perfect correlation properties of the Moreno-Omrani-Maric construction to keep
a low cross-correlation between matrices in the same family. In summary we
showed a method to increase the number of matrix sequences and the number
of dots in those matrices resulting in matrix sequences with good auto- and
cross-correlation that can be used in digital watermarking.

We obtain two new constructions of Optical Orthogonal Codes: Construction
A which produces codes with parameters (n, ω, λ) = (p(p − 1), p2−1

2 , [p(p+1)
4 ])

and construction B which produces families of code with parameters (n, ω, λ) =
(p2(p − 1), p2−1

2 , [p(p+1)
4 ]) and family size p + 1.
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Abstract. In phase-encoded optical CDMA (OCDMA) spreading is
achieved by encoding the phase of signal spectrum. Here, a mathematical
model for the output signal of a phase-encoded OCDMA system is first
derived. This is shown to lead to a performance metric for the design of
spreading sequences for asynchronous transmission.

Generalized bent functions are used to construct a family of efficient
phase-encoding sequences. It is shown how M-ary modulation of these
spreading sequences is possible. The problem of designing efficient phase-
encoded sequences is then related to the problem of minimizing PMEPR
(peak-to-mean envelope power ratio) in an OFDMcommunication system.

Keywords: Generalized bent function, optical code-division multiple
access (OCDMA), Optical CDMA, phase-encoded optical CDMA, phase
sequence, peak to average power ratio (PAPR), peak-to-mean envelope
power ratio (PMEPR).

1 Introduction

There has been a recent upsurge of interest in applying Code Division Multiple
Access (CDMA) techniques to optical networks [1,2,3].

There are two main approaches to data modulation and spreading in optical
CDMA (OCDMA). The first approach, known as direct-sequence encoding [1],
makes use of on-off-keying (OOK) data modulation and unipolar spreading se-
quences with good correlation properties. The spreading sequences used in these
systems are called optical orthogonal codes (OOC) and these have been studied
since 1990s [4]. There are many constructions and bounds on size of these codes
in the literature. Algebraic constructions for families of OOCS can be found for
instance, in [4,5,6,7,8,9,10,11,12].

The second OCDMA approach uses spectral encoding. In this method spread-
ing is achieved by encoding of amplitude or phase of data spectrum[2,3]. The
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spectral encoding OCDMA system is harder to implement in comparison with
direct-sequence OCDMA. That is perhaps the reason why most studies on spec-
tral encoding systems have an implementation focus. There are several variations
of this method. The original papers in this field [2,3] suggested phase encoding of
a coherent laser source. Because of the difficulty involved in generating coherent
lasers, spectral amplitude encoding of non-coherent sources was subsequently
suggested [13]. The current increasing demand for higher speeds has led to re-
newed interest in the use of coherent sources and spectral encoding [14,15,16].

As mentioned above, the main focus in spectrally-encoded OCDMA has been
on their implementation; there is not much literature on the subject of spreading
sequence design with the exception of a few results on spectral amplitude en-
coding. Most experimental results reporting on spectral phase-encoded OCDMA
have assumed synchronous systems and the use of Walsh-Hadamard sequences
as spreading sequences. As will be shown below, Walsh-Hadamard Sequences
are indeed ideal for the synchronous case but quite unsuitable for asynchronous
systems. Other papers in the literature have proposed the use of m-sequences or
Gold sequences as spreading sequences but do not provide adequate justification
for their use.

In this paper we first present a model of an asynchronous phase-encoded
OCDMA system, and then identify a metric reflective of the amount of the
cross-correlation (other-user interference) in the system. Based on this model,
we formulate the sequence design problem. As will be shown, this problem is
closely related to the PAPR and PMEPR problems in OFDM [17,18,19,20].
Finally, generalized bent functions [21] are used to construct efficient spreading
sequences for an asynchronous phase-encoded OCDMA system. Furthermore,
the same sequences are used to propose an M-ary modulation scheme for phase-
encoded OCDMA.

2 System Model

The system that we are modelling in this paper is a phase encoding OCDMA
system with coherent laser source. A diagram of this system with one transmitter
and receiver is shown in Figure 1. The typical laser sources used for coherent
transmission are mode locked lasers (MLL). The electrical field of a mode locked
laser can be written as:

EMLL(t) = eiω0t
K−1∑

k=0

eik(Δω)t (1)

In this equation K is the number of modes in the mode locked laser, and Δω is
the channel spacing between two consecutive modes in the mode locked laser.

The output of MLL is then passed through a phase encoder. In our model
the phase encoder applies different phase shifts to different modes of MLL to
spread it. Conventionally the phase masks used in this approach consists of only
{0, π} phase shifts. Recently, Stapleton et al. [22,23] show that using microdisk



Sequences for Phase-Encoded Optical CDMA 97

time time
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Data

Data

Fig. 1. Phase Encoding OCDMA system with Coherent Source

resonator technology any phase can be applied to the different modes of MLL.
Considering this result no restriction on the choice of phases is considered in this
paper. The output of the phase encoder will be of the form:

EEnc(t) = eiω0t
K−1∑

k=0

ei(k(Δω)t+φk) (2)

where φk is the phase shift that encoder applies to kth mode of MLL. Upon
OOK modulation with data bit d:

ETr(t) = deiω0t
K−1∑

k=0

ei(k(Δω)t+φk), d ∈ {0, 1} (3)

At the receiver, the phase decoder applies the inverse phase shift −φk to each
mode k of the received signal:

EDec(t) = deiω0t
K−1∑

k=0

ei(k(Δω)t+φk−φk)

= deiω0t
K−1∑

k=0

eik(Δω)t (4)

which is the original signal in (1) modulated by data bit d. After the phase
decoder a photo detector is used to detect the intensity of the received signal:

|EDec(t)|2 =

∣∣∣∣∣deiω0t
K−1∑

k=0

eik(Δω)t

∣∣∣∣∣

2

= d

∣∣∣∣∣

K−1∑

k=0

eik(Δω)t

∣∣∣∣∣

2

(5)
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If we sample this signal at time t = 0 then the received signal will be dK2

and we can retrieve the transmitted data d using a threshold detector.

Note 1. In this model no noise source is considered. This is because we wish to
focus on the effect of multiple access interference (MAI).

When there is more than one user transmitting data, the receiver receives the
superposition of the signals. Assume users m and n are transmitting data si-
multaneously and asynchronously. Each user uses its own phase encoder Φ(�) =
{φ�

0, φ
�
1, · · · , φ�

K−1} where � ∈ {m, n}. Let the time difference between user m
and n be denoted by τ (τ = 0 in a synchronous system ). The received signal is
given by

E
(m)
Tr (t) + E

(n)
Tr (t + τ) = d(m)eiω0t

K−1∑

k=0

ei(k(Δω)t+φ
(m)
k )

+d(n)eiω0(t+τ)
K−1∑

k=0

ei(k(Δω)(t+τ)+φ
(n)
k ) (6)

The signal at the output of the phase decoder tuned to user m takes on the
form :

d(m)eiω0t
K−1∑

k=0

ei(k(Δω)t) + d(n)eiω0(t+τ)
K−1∑

k=0

ei(k(Δω)(t+τ)+(φ
(n)
k −φ

(m)
k )) (7)

The output of the photo detector of this receiver will be the square of the mag-
nitude square of the above. As can be seen, there is multiple access interfer-
ence(MAI) at the receiver output. Each transmitter-receiver pair is assumed to
operate synchronously, and consequently, the receiver samples its output at time
t = 0 to get:

A =

∣∣∣∣∣d
(m)K + d(n)eiω0τ

K−1∑

k=0

ei(k(Δω)τ+(φ
(n)
k −φ

(m)
k ))

∣∣∣∣∣

2

=

d(m)K2 + d(n)

∣∣∣∣∣

K−1∑

k=0

ei(k(Δω)τ+(φ
(n)
k −φ

(m)
k ))

∣∣∣∣∣

2

+

2d(m)d(n)KRe

(
e−iω0τ

K−1∑

k=0

e−i(k(Δω)τ+(φ
(n)
k −φ

(m)
k ))

)
(8)

When d(n) = 0 there is no interference and we are back to the single-user case.
hence we assume d(n) = 1 from here on.

Note 2. In the synchronous τ = 0 case, if Φ(m) and Φ(n) are Walsh-Hadamard
sequences, (i.e., each {exp(iφ(�)

k )} is a sequence in the Walsh-Hadamard sequence
family), the two summations in (8) become zero, and there is no interference.
This is of course clearly not the case when τ �= 0 (see Example 2).
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Setting

Θnm(τ) =
K−1∑

k=0

e−i[k(Δω)τ+(φ
(n)
k −φ

(m)
k )] (9)

and noting that

| Re
(
e−iω0τΘnm(τ)

) |≤ |Θnm(τ)| (10)

we obtain the following upper and lower bounds for Equation (8):

d(m)K2 + |Θnm(τ)|2 − 2d(m)K |Θnm(τ)| ≤ A

≤ d(m)K2 + |Θnm(τ)|2 + 2d(m)K |Θnm(τ)| (11)

It follows that minimization of |Θnm(τ)| for all τ is a reasonable criterion for
signal design.

Note 3. The above generalizes in straightforward fashion to the case of more
than 2 users.

3 Connection with PAPR Problem

Our objective is thus the design of sequences of length K such that:

max
τ

|Θnm(τ)| = max
τ∈[0, 2π

Δω )

∣∣∣∣∣

K−1∑

k=0

e−i[k(Δω)τ+(φ
(n)
k −φ

(m)
k )]

∣∣∣∣∣ (12)

is minimized for every sequence pair {φ
(n)
k }, {φ

(m)
k }. Equivalently, we seek to

minimize

max
τ∈[0,1)

∣∣∣∣∣

K−1∑

k=0

e−ik2πτe−i(φ
(n)
k −φ

(m)
k )

∣∣∣∣∣ (13)

The design of sequences with minimum PAPR (peak to average power ratio)
crops up in conjunction with signal design for OFDM systems [17,18,19,20]. Since
designing for low PAPR is hard, the common design approach is to design for
low PMEPR (peak-to-mean envelope power ratio) which is more tractable. The
PEMPR problem (see [20]) is one of designing sequences {ak} which minimize :

max
τ∈[0,1)

∣∣∣∣∣
1
K

K−1∑

k=0

ake−ik2πτ

∣∣∣∣∣

2

(14)

As can be seen, in our problem we are interested in phase sequences Φ(m) and
Φ(n) such that exp(−i(Φ(n) − Φ(m))) is a sequence with good PMEPR.
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The results in [20] as applied to the present situation are stated below. Let

M
(K)
d = max

j=0,··· ,K−1

∣∣∣∣∣

K−1∑

k=0

e−ik2π( j
K )e−i(φ

(n)
k −φ

(m)
k )

∣∣∣∣∣ (15)

and

M (K)
c = max

τ∈[0,1)

∣∣∣∣∣

K−1∑

k=0

e−ik2πτ e−i(φ
(n)
k −φ

(m)
k )

∣∣∣∣∣ (16)

From [20], we have that

Proposition 1. M
(K)
d ≥ √

K .

Proposition 2. For K > 3:

M
(K)
c

M
(K)
d

<
2
π

ln K + 1.132 +
3
K

(17)

The above proposition is a special form of the general bound derived in [20]:

Proposition 3. For K > 3:

2
π

ln K + 0.603 − 1
6K

< max
FK(t)

{
Mc(FK)
Md(FK)

}
<

2
π

ln K + 1.132 +
3
K

(18)

in which:

FK(t) =
K−1∑

k=0

ake2πikt; Such that
K−1∑

k=0

|ak|2 = K (19)

and

Md(FK) = max
j=0,··· ,K−1

∣∣∣∣FK

(
j

K

)∣∣∣∣ , Mc(FK) = max
t∈[0,1)

|FK (t)|

The implication of Proposition 2 is that, if we design sequences with good asyn-
chronous properties for sufficiently many samples of τ , it is guaranteed that the
same sequences have good asynchronous properties for all values of τ .

4 Construction of Good Asynchronous Sequences for
Phase Encoding OCDMA

In this section we use generalized bent functions to design sequences with good
asynchronous properties. Some preliminaries on generalized bent functions that
we will use are introduced in following:
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Fig. 2. An Example of Application of Theorem 6 with K = 7

4.1 Generalized Bent Functions

Definition 1. [21] Let Jm
q denote the set of m-tuples with elements drawn from

the set of integers modulo q, w = ei( 2π
q ) and g a complex-valued function defined

on Jm
q . The Fourier transform of g is then defined to be the function G given

by:

G(λ) =
1√
qm

∑

x∈Jm
q

g(x)w−λtx, λ ∈ Jm
q (20)

Definition 2. [21] A function f , f : Jm
q → J1

q is said to be bent if the Fourier
transform coefficients of wf all have unit magnitude.

Proposition 4. [21]Every affine or linear translate of a bent function is also
bent.

Proposition 5. [21]Let q be odd. Then the function f over J1
q defined by:

f(k) = k2 + ck + d all k ∈ J1
q . (21)

is bent for all c ∈ J1
q and d ∈ J1

q .

4.2 Construction

Theorem 6. Let

Φ = {Φ(�) | Φ(�) = {φ�
0, φ

�
1, · · · , φ�

K−1}, � ∈ {1, 2, · · · , L}}
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Fig. 3. An Example of Walsh-Hadamard Sequences with K = 8

be a family of phase sequences such that the difference sequence is associated to
a bent function, i.e.,

Φ(n) − Φ(m) =
2π

K
(f(0), f(1), · · · , f(K − 1)), n �= m

where f(x) is a bent function over JK .Then max |Θnm(τ)| is as small as can
possibly be over multiples τ of 2π

K(Δω) , and thus these phase sequences are suitable
for use in asynchronous phase-encoded OCDMA systems.

In particular, the phase sequences

φ
(m)
k = (k3 + amk2 + bmk + cm)

2π

K
,

am, bm, cm ∈ ZK ; m �= n : am �= an; K a prime > 2

are suitable for use as for asynchronous phase encoding OCDMA systems with
K modes, where K is an odd prime.

Example 1. Figure 2 shows the application of the construction of Theorem 6,
where K = 7, ω0 = π

4 , Δω = π
10 , (am, bm, cm) = (2, 5, 3) and (an, bn, cn) =

(5, 4, 1). For this system Φ(m) = (6π
7 , 8π

7 , 2π
7 , 0, 0, 0, 12π

7 ) and Φ(n) = (2π
7 , 8π

7 , 4π
7 ,

2π
7 , 0, 10π

7 , 2π
7 ). In this figure the solid line is the output of MLL as seen after

the photo detector and the dashed line shows |Θnm(τ)|2 at the output. Here the
circles are samples of |Θnm(τ)|2 for τ = 2πj

K(Δω) . As can be seen, all these values

are equal to K = 7. It can be observed that |Θnm(τ)|2 is low for all values of τ
and the phase sequences are thus applicable for asynchronous transmission.
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Fig. 4. Block Diagram of M-ary Modulation Transmitter and Receiver

Example 2. Figure 3 shows the application of Walsh-Hadamard sequences for
asynchronous systems. In this graph K = 8, ω0 = π

4 , Δω = π
10 , Φ(m) =

(0, 0, 0, 0, 0, 0, 0, 0) and Φ(n) = (π, π, π, π, 0, 0, 0, 0). In this figure the solid line
is the output of MLL as it is seen after photo detector and the dashed line is
showing |Θnm(τ)|2 at the output. As can be seen the system has no interfer-
ence for τ = 0 (synchronous case) while with a little deviation from τ = 0,
|Θnm(τ)|2 increases dramatically. Because of the high peak of |Θnm(τ)|2, these
phase sequences are not suitable for asynchronous transmission.

5 M-ary Modulation

Traditionally OOK modulation is used with phase encoding OCDMA. The spec-
tral efficiency of the system can be increased if we can move from binary modula-
tion to M-ary modulation. As we will see the sequences introduced in Theorem 6
can be used for M-ary modulation without increasing the amount of interference.

In the phase sequences introduced in Theorem 6, two different users should
have sequences with different a�(square term coefficient), while when we fix a�



104 R. Omrani, P. Bhambhani, and P.V. Kumar

we can choose b� and c�(linear coefficient and constant term) arbitrarily. In other
words we can accommodate phase sequences only for K different users, but each
user has a bank of K2 sequences to choose from(any two sequences chosen from
banks of two different users have good correlation properties).

Now we introduce a new M-ary modulation scheme in which the data is en-
coded in the different phase sequences. Figure 4 shows the block diagram of
the M-ary modulation scheme. In this modulation scheme a different a� is as-
signed to each transmitter (like the OOK case). In the transmitter, each block of
2 log2 K bits of data is mapped to a different vector (b�, c�). Based on the (b�, c�)
vector, the transmitter uses the phase encoder φ

(�)
k = (k3, a�k

2 + b�k + c�)2π
K out

of its phase sequence bank to encode MLL. At the receiver there is a bank of
K2 parallel decoders tuned to all possible phase sequences in one transmitter’s
phase sequence bank. The largest output will be chosen as the input symbol.

This modulation scheme enables us to transmit more data per symbol. As
with any other M-ary scheme the increased data rate costs in an increase in the
system’s error probability in comparison to the similar OOK system. That is
because we are packing more points in the same signal space.
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Packing Centrosymmetric Patterns of n

Nonattacking Queens on an n × n Board

Herbert Taylor

1101 Loma Vista Court
South Pasadena, CA 91030, USA

Abstract

n 1 2 3 4 5 6 7 8 9 10 11

SQ(n) 1 0 0 2 1 4 1 4 1 8 1

Q(n) 1 0 0 2 5 4 7 6 ? ? 11

n 12 13 14 15 16 17 18 19 20 21 22

SQ(n) 10 1 12 1 14 1 16 1 ? 1 20

Q(n) ? 13 ? ? ? 17 ? 19 ? ? ?

SQ(n) is the maximum number of patterns that can sit on the n ×
n board where each pattern consists of n nonattacking Queens placed
symmetrically around the center. Each square of the board has at most
one Queen. Q(n) is the same except that “placed symmetrically around
the center” is not required.

Dedicated to Solomon W. Golomb on his 75th birthday

1 Introduction

Here we have two sequences of packing problems where the things to be packed
are solutions to the n queens problem.

SQ(n) is the maximum number of patterns that can sit simultaneously on
the n × n board, where each pattern consists of n nonattacking Queens placed
symmetrically around the center. Each square of the board has at most one
Queen. Q(n) is the same except that “placed symmetrically around the center”
is not required.

The original n queens problem around 1850 was to place 8 queens on the
chessboard so that no two attacked each other. See [2]. Later, when many so-
lutions had been found, the problem became to count the solutions. Now the
Encyclopedia of Integer Sequences published in 1995, by N.J.A. Sloane and Si-
mon Plouffe gives the number of solutions up to n = 20, and the number of
symmetric solutions up to n = 19.

Table 1 shows what we know about n queens, Q(n), and SQ(n).
We may need the following definition: a latin square is vatican if for any two

symbols a and b and for any k, there is at most one row in which a sits k steps
to the right of b.

The only Vatican square known to exist are given by the multiplication table
modulo p for a prime number p.

S.W. Golomb et al. (Eds.): SSC 2007, LNCS 4893, pp. 106–118, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Table 1. Status of n queens problem, Q(n), and SQ(n)

n # patterns Q(n) # symm SQ(n)

1 1 1 1 1
2 0 0 0 0
3 0 0 0 0
4 2 2 2 2
5 10 5 2 1
6 4 4 4 4
7 40 7 8 1
8 92 6 4 4
9 352 7 ≤? ≤ 9 16 1
10 724 8 ≤? ≤ 10 12 8
11 2680 11 48 1
12 14200 10 ≤? ≤ 12 80 10
13 73712 13 136 1
14 365596 12 ≤? ≤ 14 420 12
15 2279184 ? 1240 1
16 14772512 14 ≤? ≤ 16 2872 14
17 95815104 17 7652 1
18 666090624 16 ≤? ≤ 18 18104 16
19 4968057848 19 50184 1
20 39029188884 ? ≤ 20 ? ≤ 18
21 ? ≤ 21 1
22 20 ≤? ≤ 22 20

2 Results

This paper contains four cases. These are CASE I: SQ(n) when n is odd; CASE
II: SQ(n) when n is even; CASE III: Q(n) when n is odd; and CASE IV:
Q(n) when n is even.

In any case any diagonal can have at most one Queen from one pattern of n
nonattacking Queens.

CASE I: SQ(n) when n is odd

The center row and center column meet on the center square, which therefore
must have a Queen from any pattern which is both odd and centrosymmetric.

Fig. 1. SQ(1) = 1, SQ(3) = 0, and SQ(5) = 1
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Fig. 2. SQ(9) = 1

Figure 1 shows that SQ(1) = 1, SQ(3) = 0 and SQ(5) = 1. Each of the four
figures in Fig. 2 shows SQ(9) = 1. First conjecture is the following:

Conjecture 1. SQ(n) = 1 for odd n > 3.

CASE II: SQ(n) when n is even

In this case, the center is not a square of the board so both main diagonals must
be empty. Thus we know that when n is even, SQ(n) ≤ n − 2.

Theorem 2. If n + 1 is an odd prime, then SQ(n) = n − 2.

Proof. Write the multiplication table for the prime n + 1, putting the first
column 1, 2, 3, ..., n and the first row 1−1, 2−1, 3−1, ..., n−1. So, one main diagonal
will have all 1’s, and the other diagonal will have all n’s. Golomb’s observation
that this is a Vatican square leads to the observation that on any diagonal other
than the two main diagonals all the symbols must be different. In other words
each of the symbols 2, 3, ..., n − 1 forms a pattern of n nonattacking Queens
on an n × n board. Centrosymmetry holds because in a prime field we have
−(a−1) = (−a)−1. ��
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Fig. 3. SQ(10) = 8

Fig. 4. SQ(8) = 4

Another proof adapted from Golomb’s construction of “superqueens” [3] pic-
tures each pattern as a line through the origin on a p × p vector space over
GF (p).

Yet another proof starts with the Welch construction for Costas arrays as
in [7].

All three proofs give us essentially the same picture. See Fig. 3
What about SQ(n) when n + 1 is odd but not prime? From [8] we know that

only four centrosymmetric patterns of eight nonattacking Queens exist on the
8 × 8 board. See Fig. 4.

A rash conjecture was made in [7] that if SQ(n) = n − 2 then n + 1 must be
prime. See Fig. 5 for a counterexample. Now we are left with the following open
question:

Question 3. SQ(n) =? when n + 1 > 15 is odd but not prime.
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Fig. 5. SQ(14) = 12

Fig. 6. Q(11) = 11

CASE III: Q(n) when n is odd

Theorem 4. If n = 6m + 1 or n = 6m − 1, then Q(n) = n.

Proof. An easy construction is as follows. Start with an n × n board. In the
first row write 1, 3, 5, ..., n, 2, 4, 6, ..., n− 1. In row k +1 add 1 to each number in
row k mod n. The resulting latin square, as it stands, shows that Q(n) = n, if
n = 6m + 1 or n = 6m − 1. See Fig. 6. ��
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2

1 3 5 7 2 4 6 1 3 5 7 2 4 6

2 2 -5 2 2 -5 2 2 2 -5 2 2

4 4 -3 -3 4 -3 -3 4 4 -3 -3 4

6 -1 -1 -1 -1 -1 -1 6 -1 -1 -1

1 1 1 -6 1 1 1 1 1 1

3 3 -4 -4 3 3 -4 3 3

5 -2 -2 -2 5 -2 -2 5

0 0 0 0 0 0 0

Fig. 7. Q(7) = 7

Fig. 8. Q(9) ≥ 7

I believe this theorem is also proved in [8].
To check that each row gives a pattern of n nonattacking Queens in Gauss’s

Arithmetization we can use a difference triangle extended far enough to include
all the shifts of the pattern toroidal fashion. See Fig. 7.

When n = 6m + 3 the situation is baffling. Q(3) = 0 is the only n = 6m + 3
for which I know the exact value of Q(n). Any comments will be very welcome.
The present state of affairs for n = 9 is that 7 ≤ Q(9) ≤ 9. See Fig. 8. See “A
Simple Game.”

A Simple Game

The board can be 9 × 9. Player A has nine pieces each labeled A. Player B has
nine pieces each labeled B. The players take turns putting one of their letters on
the board. The letter can go on any unoccupied square, but never allowing two
of the same letter in any row, column, or diagonal. If all nine A’s and all nine
B’s get put on the board, the game is a draw. Otherwise the first player who
cannot put another letter is the loser.
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Fig. 9. A 3 × 3 pattern that fails to be a nonattacking Queens pattern

Fig. 10. A 6 × 6 pattern that is a nonattacking Queens pattern

Fig. 11. Q(8) ≥ 6

To avoid draws the game could continue with nine each of C, D, E, F, G, and
H. If the players reach a draw in that extended game it will mean Q(9) ≥ 8,
which will be worth a prize.

Gauss’ Arithmetization and Difference Triangle

Gauss’ idea was to represent an n × n permutation matrix as a permutation of
the numbers from 1 to n so that the number in the j-th position is the height
of the dot in the j-th column. For example,



Packing Centrosymmetric Patterns of n Nonattacking Queens 113

Fig. 12. A configuration of twelve squares on 8 × 8 board that shows Q(8) < 8

Fig. 13. A 4 × 4 board and its symmetry coloring

Fig. 14. A 5 × 5 board and its symmetry coloring

The test for nonattacking Queens is that for every k from 1 to n−1, (j+k)-th
height minus j-th height shall never be +k nor −k. To see at a glance whether
or not a permutation passes Gauss’ test, picture it in a difference triangle as
shown in Figures 9 and 10.

CASE IV: Q(n) when n is even

When n > 8 we don’t have a proof that Q(n) < n.
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1 365 8 7 2 4 1 736 8 4 2 5 2 384 6 1 7 5

2 315 7 8 6 4 2 145 7 8 6 3 2 476 1 8 3 5

2 136 8 4 7 5 2 867 3 5 1 4 2 187 5 4 6 3

3 145 8 7 2 6 3 856 2 1 7 4 3 185 2 7 4 6

Fig. 15. All the distinct twelve nonattacking Queens patterns for n = 8

Fig. 16. Symmetry coloring of an 8 × 8 board
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Fig. 17. Number of dots in symmetry coloring, corresponding to Figure 15

Fig. 18. Proof that Q(8) < 7

Question 5. Do there exist any even n for which Q(n) > n − 2?

Now we will conclude with an explanation of the proof that Q(8) = 6. By trial
and error the picture of Fig. 11 was discovered. Then a configuration of twelve
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Fig. 19. 3-dimensional Q(11)

Fig. 20. Orthogonality of Q(11) and 3DQ(11)

squares on the 8×8 board was discovered which has the property that any pattern
of 8 nonattacking Queens can take at most one square in the configuration. See
Fig. 12. Any pattern of 8 nonattacking Queens can sit on at most one square of
the configuration. Thus 8 patterns would leave four squares of the configuration
empty, and consequently, Q(8) < 8. It is now sufficient to show that Q(8) < 7.
For this, we need the concept of symmetry coloring.
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Symmetry Coloring

We can color the squares of the n×n board by symmetry, that is, two squares get
the same color if one can be moved to the other by rotations and/or reflections
of the board.

For example, the 4× 4 board gets three colors 11, 22, and 21, as shown in the
first of Fig. 13. Here, the color 11 is on 4 squares, the color 22 is on 4 squares,
and the color 21 is on 8 squares. We can eightfold this so that it looks like that in
the middle of Fig. 13, and it can be represented as shown in the third of Fig. 13.
Another example on the 5 × 5 board is shown in Fig. 14.

To show that Q(8) < 7, we first found that there exist exactly 12 distinct 8×8
nonattacking Queens patterns [8] with respect to the symmetry of all rotations
and reflections of the board. They are shown in Fig. 15.

By symmetry coloring, we distinguish the colors of each square of an 8 × 8
board as 11, 22, 33, 44 appearing 4 times, and 21, 31, 41, 32, 42, 43 appearing 8
times each, respectively, as shown in Fig. 16.

Now, each pattern of 8 × 8 nonattacking Queens patterns in Fig. 15 can be
represented as shown in Fig. 17. Here, the number in each square is the number
of dots of each pattern with respect to the symmetry of squares.

The twelve patterns are now classified into I, II, and III, as shown in Fig. 18,
and we are now ready to show that it is impossible to place any 7 of them into a
single 8 × 8 board. To put seven patterns there cannot be two empty squares in
any row or column. Therefore, we must take two patterns in I to satisfy color 11.
Otherwise, see that there exist two empty squares in a row or a column passing
through the corner squares. We must take two more in II for color 33, and take
two more in III for color 44. But then, with six patterns, color 41 is full with
eight. A seventh pattern would overfill color 41. This completes the proof.

Afterword

During the talk, Sol Golomb asked for a renumbering of the figure Q(11) = 11 to
make an example of n2 nonattacking 3D Queens on a board which is n × n × n.

As presented in [4], any latin square can be seen as a figure composed of n2

nonattacking 3D Rooks on a board which is n × n × n. Here we have Fig. 19
obtained by permuting rows of Fig. 6. This construction will surely work when
n is prime and n > 7. But a question remains open for n = 25 or n = 35 or in
general when n = 6m + 1 or n = 6m − 1 but n is not prime.

Another question which will necessitate much further study appeared unex-
pectedly with the discovery that “Q(11) = 11” and “3DQ(11)” shown in Fig. 6
and Fig. 19 form a pair of orthogonal latin squares. See Fig. 20.
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Abstract. We explore a connection between permutation polynomials
of the form xrf(x(q−1)/l) and cyclotomic mapping permutation poly-
nomials over finite fields. As an application, we characterize a class of
permutation binomials in terms of generalized Lucas sequences.
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1 Introduction

Let p be prime and q = pm. A polynomial is a permutation polynomial (PP)
of a finite field Fq if it induces a bijective map from Fq to itself. The study of
permutation polynomials of a finite field goes back to 19-th century when Her-
mite and later Dickson pioneered this area of research. In recent years, interests
in permutation polynomials have significantly increased because of their poten-
tial applications in public key cryptosystems ([12],[13],[14]), RC6 block ciphers
([21], [22]), combinatorial designs like de Bruijn sequences ([6]), Tuscan-k arrays
([8]), and Costas arrays ([5], [11]), among many others. Permutation polynomials
are also used in coding theory, for instance, permutation codes in power com-
munications ([7]), and interleavers in Turbo codes ([26]) etc. In some of these
applications, the study of permutation polynomials over finite fields has also
been extended to the study of permutation polynomials over finite rings and
other algebraic structures. For more background material on permutation poly-
nomials we refer to Chap. 7 of [18]. For a detailed survey of open questions and
recent results see [9], [15], [16], and [19].

Every polynomial P (x) over Fq such that P (0) = 0 has the form xrf(xs) with
r > 0 and some positive integer s | q − 1. Here we are interested in permutation
behavior of polynomials P (x) = xrf(xs) over finite field Fq, where f(x) is an
arbitrary polynomial of degree e > 0, 0 < r < q − 1, and q − 1 = ls for
some positive integers l and s. In Sect. 2, we introduce the notion of r-th order
cyclotomic mappings f r

A0,A1,···,Al−1
of index l and reveal a simple and very useful

connection between polynomials of the form xrf(xs) and so-called r-th order
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cyclotomic mapping polynomials. That is, P (x) = xrf(xs) = f r
A0,A1,···,Al−1

(x)
where Ai = f(ζi) for 0 ≤ i ≤ l − 1 and ζ is a primitive l-th root of unity. This
provides us an easier way to study polynomials of the form xrf(xs). Indeed,
many different criteria of when these polynomials are permutation polynomials
are summarized in Theorem 1. Some new classes of permutation polynomials are
given to demonstrate the potential applications of these criteria. In particular,
in Sect. 3, we characterize permutation binomials of the form P (x) = xr(xes +1)
over Fq in terms of the generalized Lucas sequences of order l−1

2 over Fp as a
concrete application (Theorem 3). Earlier study in this direction can be found
in [1], [2] and [3].

2 Cyclotomic Mapping Permutation Polynomials

Let γ be a primitive element of Fq, q − 1 = ls for some positive integers l and s,
and the set of all nonzero l-th powers of Fq be C0 = {γlj : j = 0, 1, · · · , s − 1}.
Then C0 is a subgroup of F

∗
q of index l. The elements of the factor group F

∗
q/C0

are the cyclotomic cosets

Ci := γiC0, i = 0, 1, · · · , l − 1.

For any integer r > 0 and any A0, A1, · · · , Al−1 ∈ Fq, we define an r-th order cy-
clotomic mapping f r

A0,A1,···,Al−1
of index l from Fq to itself by f r

A0,A1,···,Al−1
(0) =

0 and
f r

A0,A1,···,Al−1
(x) = Aix

r if x ∈ Ci, i = 0, 1, · · · , l − 1.

Moreover, f r
A0,A1,···,Al−1

is called an r-th order cyclotomic mapping of the least
index l if the mapping can not be written as a cyclotomic mapping of any smaller
index. The polynomial f r

A0,A1,···,Al−1
(x) ∈ Fq[x] of degree at most q − 1 repre-

senting the cyclotomic mapping f r
A0,A1,···,Al−1

is called an r-th order cyclotomic
mapping polynomial. In particular, when r = 1, it is known as a cyclotomic
mapping polynomial (see [10] or [20]).

Let ζ = γs be a primitive l-th root of unity. Next we show that polyno-
mials of the form xrf(xs) and the r-th order cyclotomic mapping polynomials
f r

A0,A1,···,Al−1
(x) where Ai = f(ζi) for 0 ≤ i ≤ l − 1 are the same.

Lemma 1. For any r > 0, xrf(xs) = f r
A0,A1,···,Al−1

(x) where Ai = f(ζi) for
0 ≤ i ≤ l − 1.

Proof. For any x ∈ Ci, x = γlj+i for some 0 ≤ j ≤ s − 1. Hence f(xs) =
f((γljγi)s)=f(γis)=f(ζi) = Ai. Therefore P (x) = xrf(xs)=f r

A0,A1,···,Al−1
(x).

��
This simple connection provides us some useful criteria of when polynomials
P (x) = xrf(xs) are permutation polynomials of Fq. It is well known that if
P (x) = xrf(xs) is a permutation polynomial of Fq then (r, s) = 1, where (r, s)
denotes the greatest common divisor of r and s. Otherwise, let (r, s) = d �= 1,
then two distinct d-th roots of unity are mapped to the same element by P (x),
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a contradiction. Moreover, we note that Aj �= 0 for all j = 0, · · · l − 1 in any
permutation polynomial f r

A0,A1,···,Al−1
(x) since, otherwise, f r

A0,A1,···,Al−1
(x) has

more than 1 zeros. Hence we assume that (r, s) = 1 and Ai �= 0 for 0 ≤ i ≤ l − 1
without loss of generality.

We first recall the following Lemma from [4].

Lemma 2. Let l | q − 1 and ξ0, ξ1, · · · , ξl−1 be some l-th roots of unity in Fq.
Then ξ0, ξ1, · · · , ξl−1 are all distinct if and only if

l−1∑

i=0

ξc
i = 0, for all c = 1, · · · , l − 1.

Proof. For the sake of completeness, we include the proof from [4]. First note
that for an l-th root of unity ξ, we have

1 + ξ + · · · + ξl−1 =
{

0 if ξ �= 1,
l if ξ = 1.

Now for t = 0, · · · , l − 1, let

ht(x) =
l−1∑

j=0

ξl−j
t xj .

We have

ht(ξj) =
{

0 if t �= j,
l if t = j.

Let

h(x) =
l−1∑

t=0

ht(x) = l +
l−1∑

j=1

(
l−1∑

t=0

ξl−j
t

)
xj .

We consider h as a function from μl to Fq. Since the degree of h(x) is less than
or equal to l − 1, it is clear that ξ0, ξ1, · · · , ξl−1 are all distinct if and only if
h(x) = l. This implies the result. ��

Theorem 1. Let p be prime and q = pm, q − 1 = ls for some positive integers
l and s, γ be a given primitive element of Fq and ζ = γs be a primitive l-th
root of unity. Assume P (x) = xrf(xs) = f r

A0,A1,···,Al−1
(x) with (r, s) = 1 and

Ai = f(ζi) �= 0 for 0 ≤ i ≤ l − 1. Then the following are equivalent:

(a) P (x) = xrf(xs) is a permutation polynomial of Fq.
(b) f r

A0,A1,···,Al−1
(x) is a permutation polynomial of Fq.

(c) AiCir �= Ai′Ci′r for any 0 ≤ i < i′ ≤ l − 1.
(d) Indγ( Ai

Ai′
) �≡ r(i′ − i) (mod l) for any 0 ≤ i < i′ ≤ l − 1, where indγ(a) is

residue class b mod q − 1 such that a = γb.
(e) {A0, A1γ

r, · · · , Al−1γ
(l−1)r} is a system of distinct representatives of F

∗
q/C0.
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(f) {As
0, A

s
1ζ

r , · · · , As
l−1ζ

(l−1)r} = μl, where μl is the set of all distinct l-th roots
of unity.

(g)
l−1∑

i=0

ζcriAcs
i = 0 for all c = 1, · · · , l − 1.

Proof. By Lemma 1, (a) and (b) are equivalent. Since Ci = {γlj+i : j =
0, 1, · · · , s − 1}, for any two elements x �= y ∈ Ci, we have x = γlj+i and
y = γlj′+i for some 0 ≤ j �= j′ ≤ s − 1 . Since (r, s) = 1, we obtain Aix

r =
Aiγ

lrj+ir �= Aiy
r = Aiγ

lrj′+ir. Moreover, it is easy to prove that Cr
0 = C0 and

more generally Cr
i = Cir for any 0 ≤ i ≤ l − 1. Hence (b) and (c) are equivalent.

Because Aiγ
ir is a coset representative of AiCir, it is easy to see that (c),

(d), (e), and (f) are equivalent. Finally, since all of As
0, A

s
1ζ

r, · · · , As
l−1ζ

(l−1)r are
l-th roots of unity, (f) means that As

0, As
1ζ

r , · · ·, As
l−1ζ

(l−1)r are all distinct. By
Lemma 2, (f) is equivalent to (g). ��

We note that the equivalence of (a) and (d) was first found in [24] and the
equivalence of (a) and (g) was first proved in [4]. In fact, P (x) = xrf(xs) is a
PP of Fq if and only if (r, s) = 1, Ai = f(ζi) �= 0 for all 0 ≤ i ≤ l−1, and any one
of the conditions in Theorem 1 holds. From now on, permutation polynomials
P (x) = xrf(xs) = f r

A0,A1,···,Al−1
(x) where Ai = f(ζi) for 0 ≤ i ≤ l − 1 are

called r-th order cyclotomic mapping permutation polynomials of index l. In the
following, we use Theorem 1 (e) to obtain the number of r-th order cyclotomic
mapping permutation polynomials of Fq of index l as in Theorem 2 [20]. The
second part is obtained by using Möbius inversion formula of

∑
d|l Qd = Pl.

Corollary 1. Let p be prime, q = pm, and l | q − 1 for some positive integer l.
For each positive integer r such that (r, s) = 1, there are Pl = l!( q−1

l )l distinct r-
th order cyclotomic mapping permutation polynomials of Fq of index l. Moreover,
the number Ql of r-th order cyclotomic mapping permutation polynomials of Fq

of least index l is

Ql =
∑

d|l
μ

(
l

d

) (
q − 1

d

)d

d!.

Therefore there are l!( q−1
l )lφ( q−1

l ) distinct permutation polynomials of the form
xrf(xs) of Fq in total, which was also obtained in [24] through a study of the
group structure of these permutation polynomials.

In the rest of this section, we will see some examples of permutation poly-
nomials of this form. It is well known that P (x) = xr+es is a permutation
polynomial of Fq if and only if (r + es, q − 1) = 1, which is equivalent to condi-
tions (r + es, s) = 1 and (r + es, l) = 1. Obviously, (r + es, s) = 1 is the same
as (r, s) = 1. And the condition (r + es, l) = 1 is equivalent to the conditions
stated in Theorem 1 for f(x) = xe.

For l = 3 | q − 1 and an integer s = q−1
3 , by Theorem 1, xrf(xs) is a

permutation polynomial of Fq if and only if (r, s) = 1 and {As
0, A

s
1θ

r, As
2θ

2r} =
μ3 = {1, θ, θ2} where θ3 = 1 and Ai = f(θi) for i = 0, 1, 2. The condition
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{As
0, A

s
1θ

r, As
2θ

2r} = {1, θ, θ2} is equivalent to As
0 �= As

1θ
r, As

0 �= As
2θ

2r, As
1θ

r �=
As

2θ
2r . However, in some cases, we always have As

0 = 1. Next we construct some
new classes of permutation polynomials of this type.

Theorem 2. Let p be prime, q = pm, and q−1 = 3s for some positive integer s.
Assume f(x) ≡ ax2+bx+c (mod x3−1) such that a2+b2+c2−ab−ac−bc = 1.
Then P (x) = xrf(xs) is a permutation polynomial of Fq if and only if (r, s) = 1,
As

0 = 1 and As
1θ

r �= As
2θ

2r where θ3 = 1 and Ai = f(θi) for i = 0, 1, 2.

Proof. If a2 + b2 + c2 − ab − ac − bc = 1, then A1A2 = f(θ)f(θ2) = 1. If
P (x) is a PP, then

∏
x∈F∗

q
P (x) = −1 implies that As

0 = 1. Hence P (x) =
xrf(xs) is a permutation polynomial of Fq if and only if (r, s) = 1, As

0 = 1 and
{As

1θ
r, As

2θ
2r} = {θ, θ2}. Since As

0 = 1, we note that {As
1θ

r, As
2θ

2r} = {θ, θ2} is
also equivalent to As

1θ
r �= As

2θ
2r. Indeed, As

0 = (As
1θ

r)(As
2θ

2r) = 1 implies that
either As

1θ
r = As

2θ
2r = 1 or {As

1θ
r, As

2θ
2r} = {θ, θ2}. ��

Corollary 2. Let p be prime, q = pm, and q − 1 = 3s for some positive integer
s. Assume that f(x) ≡ ax2 + bx+ a (mod x3 − 1) such that (a − b)2 = 1. Then
xrf(xs) is a permutation polynomial of Fq if and only if (r, s) = 1, (2a+ b)s = 1
and (r + s, 3) = 1.

Proof. Since f(x) ≡ ax2 + bx + a (mod x3 − 1) and θ3 = 1, A2 = f(θ2) =
θf(θ) = θA1. Hence As

1θ
r �= As

2θ
2r reduces to θr+s �= 1, which is equivalent to

(r + s, 3) = 1. The rest follows from Theorem 2 and A0 = f(1) = 2a + b. ��

3 Permutation Binomials and Generalized Lucas
Sequences

In this section, we explain how permutation binomials and generalized Lucas
sequences are closely related as a result of Theorem 1. Again, we let p be prime,
q = pm, q − 1 = ls for some positive integers l and s, and ζ be a primitive l-th
root of unity. Here we consider permutation polynomials over Fq of the form
P (x) = xr(xes +1) with (e, l) = 1. That is, P (x) = xrf(xs) where f(x) = xe +1
and (e, l) = 1. We note that the case of f(x) = xe + b with an l-th root of unity
b is similar. In this case, p is odd. Otherwise, P (0) = P (1) = 0. Moreover, we
must have ζei �= −1 for i = 0, · · · , l − 1. Hence l must be odd. Then s must
be even. In fact, without loss of generality, we can assume l ≥ 3 from now on.
Moreover, since l | q − 1 and both p and l are odd, there exists η ∈ Fq such that
η2 = ζ. Hence η is a primitive 2l-th root of unity in Fq.

We define the sequence {an}∞n=0 by

an =

l−1
2∑

t=1

(
(−1)t+1(ηt + η−t)

)n
=

l−1∑

t=1
t odd

(
ηt + η−t

)n
.

The sequence {an}∞n=0 is then called generalized Lucas sequence of order l−1
2

because {an}∞n=0 = {Ln}∞n=0 when l = 5, where the Lucas sequence {Ln}∞n=0 is
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an integer sequence satisfying the recurrence relation Ln+2 −Ln+1 −Ln = 0 and
L0 = 2 and L1 = 1.

For any integer n ≥ 1 and a ∈ Fq, the Dickson polynomial of the first kind
Dn(x, a) ∈ Fq[x] of degree n with parameter a is defined by

Dn(x, a) =
�n/2�∑

i=0

n

n − i

(
n − i

i

)
(−a)ixn−2i.

Similarly, the Dickson polynomial of the second kind En(x, a) ∈ Fq[x] of degree
n with parameter a is defined by

En(x, a) =
�n/2�∑

i=0

(
n − i

i

)
(−a)ixn−2i.

For a �= 0, we write x = y + a/y with y an indeterminate. Then the Dickson
polynomials can often be rewritten as

Dn(x, a) = Dn

(
y +

a

y
, a

)
= yn +

an

yn
,

and

En(x, a) = En

(
y +

a

y
, a

)
=

yn+1 − an+1/yn+1

y − a/y
.

In the case a = 1, we denote Dickson polynomials of degree n by Dn(x) and
En(x) respectively. It is well known that Dickson polynomials are closely re-
lated to the Chebyshev polynomials by the connections Dn(2x) = 2Tn(x) and
En(2x) = Un(x), where Tn(x) and Un(x) are Chebyshev polynomials of degree n,
of the first kind and the second kind respectively. More information on Dickson
polynomials can be found in [17].

We consider the Dickson polynomial El−1(x) of the second kind of degree l−1
with parameter a = 1. It is well known that ηt + η−t with 1 ≤ t ≤ l − 1 are all
the roots of El−1(x) where η is a primitive 2l-th root of unity. Let

Eodd
l−1(x) =

l−1∏

t=1
odd t

(x − (ηt + η−t)).

Then the characteristic polynomial of the sequence {an}∞n=0 is Eodd
l−1(x). Using

the factorization of Ul−1(x) over Z (Theorem 2 in [23]) and the fact El−1(2x) =
Ul−1(x), it is obvious to conclude that Eodd

l−1(x) is also a polynomial with integer
coefficients (thus over Fp). It then follows from Waring’s formula (Theorem 1.76
in [18]) that {an}∞n=0 is an integer sequence and thus a sequence over Fp. For
more information on the sequence {an}∞n=0, one can also refer [1], [2], and [3].

Theorem 3. Let p be odd prime and q = pm. Assume that l, s, r, e are positive
integers such that l is odd, q − 1 = ls, and (e, l) = 1. Then P (x) = xr(xes + 1)
is a permutation polynomial of Fq if and only if
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(i) (r, s) = 1;
(ii) 2s ≡ 1 (mod p);
(iii) 2r + es �≡ 0 (mod l);

(iv)
cj/2∑

k=0

cj

cj − k

(
cj − k

k

)
(−1)kacs+cj−2k = −1 in Fp for all c = 1, · · · , l−1, where

{an}∞n=0 is the generalized Lucas sequence of order l−1
2 and 2eφ(l)−1r+s ≡ j

(mod 2l).

Proof. Let P (x) be a PP of Fq. It is well-known that (r, s) = 1. Moreover,
∏

x∈F∗
q

P (x) = −1 implies that
∏

x∈F∗
q

(xes + 1) = 1. Then

(
l−1∏

i=0

(ζi + 1)

)s

= 1. Since

l is odd,
l−1∏

i=0

(ζi + 1) =
l−1∏

i=0

(1 − (−ζi)) = 1 − (−1) = 2. Hence 2s ≡ 1 (mod p) and

(ii) holds.
Assume that 2r + es ≡ 0 (mod l). Since s is even, 2r + es ≡ 0 (mod 2l). By

Theorem 1 (g), we have
l−1∑

i=0

ζcriAcs
i = 0 for all c = 1, · · · , l−1, where Ai = ζei+1.

Since l | q − 1 and l is odd, we can find η ∈ Fq such that η2 = ζ. Thus we obtain

l−1∑

i=0

η(2r+es)ci(ηei + η−ei)cs = 0, for all c = 1, · · · , l − 1. (1)

It follows from 2r + es ≡ 0 (mod 2l) that

l−1∑

i=0

(ηei + η−ei)cs = 0, for all c = 1, · · · , l − 1.

Since each (ηei + η−ei)s is an l-th root of unity, by Lemma 2, (ηei + η−ei)s, i =
0, · · · , l − 1, are all distinct. However, since s is even, we have (ηei + η−ei)s =
(ηe(l−i) + η−e(l−i))s, a contradiction. Hence 2r + es �≡ 0 (mod l) and (iii) holds.

Using (e, l) = 1, we have eφ(l) ≡ 1 (mod l) where φ is the Euler’s totient
function. Then we can rewrite (1) as

2cs+
(l−1)/2∑

t=1

(ηc(2eφ(l)−1r+s)t+η−c(2eφ(l)−1r+s)t)(ηt+η−t)cs = 0, for all c = 1, · · · , l−1.

(2)

Let 2eφ(l)−1r+s ≡ j (mod 2l). Then it yields that ηcjt +η−cjt = Dcj(ηt +η−t)
where Dcj(ηt+η−t) is the Dickson polynomial of the first kind of degree cj. That

is, Dcj(ηt + η−t) =
cj/2∑

k=0

cj

cj − k

(
cj − k

k

)
(−1)k(ηt + η−t)cj−2k. Because both s

and j are even, we obtain
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2cs +
(l−1)/2∑

t=1

(ηc(2eφ(l)−1r+s)t + η−c(2eφ(l)−1r+s)t)(ηt + η−t)cs

= 1 +
(l−1)/2∑

t=1

cj/2∑

k=0

cj

cj − k

(
cj − k

k

)
(−1)k(ηt + η−t)cj−2k(ηt + η−t)cs

= 1 +
(l−1)/2∑

t=1

cj/2∑

k=0

cj

cj − k

(
cj − k

k

)
(−1)k(ηt + η−t)cj−2k(ηt + η−t)cs

= 1 +
cj/2∑

k=0

cj

cj − k

(
cj − k

k

)
(−1)kacs+cj−2k

= 0.

Hence (iv) follows. Conversely, assume that (i)-(iv) are satisfied, then it is straight-
forward to show that P (x) = xr(xes + 1) is a permutation polynomial of Fq by
Theorem 1. ��
We can also rewrite the above theorem in the following way.

Corollary 3. Let q = pm, p is an odd prime, and q−1 = ls for positive integers
l and s. Assume that p, l, r, s satisfies

l is odd, (e, l) = 1, (r, s) = 1, 2s ≡ 1 (mod p), 2r + es �≡ 0 (mod l).

Then P (x) = xr(xes + 1) is a permutation polynomial of Fq if and only if

jc∑

n=0

t(jc)
n acs+n = −1 in Fp, for all c = 1, · · · , l − 1,

where {an}∞n=0 is the generalized Lucas sequence of order l−1
2 , 2eφ(l)−1r + s ≡

j (mod 2l), jc = cj mod 2l and t
(jc)
n is the coefficient of xn in the Dickson

polynomial of the first kind of degree jc.

Furthermore, if (2r + es, l) = 1, then we let j′ be the inverse of 2eφ(l)−1r + s
mod l. Then (2) can be rewritten as

2c′j′s+
(l−1)/2∑

t=1

(−1)c′t(ηc′t+η−c′t)(ηt+η−t)c′j′s = 0, for all c′ = 1, · · · , l−1. (3)

Using (3) and similar arguments as before, we can improve the previous result
by using Dickson polynomials of the first kind of smaller degrees. We note that
if c′ is even, then the coefficient t

(c′)
n of xn in the Dickson polynomial of the first

kind of degree c′ is always 0 for all odd n. Similarly, if c′ is odd, then t
(c′)
n = 0

for all even n.
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Corollary 4. Let q = pm, p is odd prime, and q − 1 = ls for positive integers l
and s. Assume that p, l, r, s satisfies

l is odd, (e, l) = 1, (r, s) = 1, 2s ≡ 1 (mod p), (2r + es, l) = 1.

Then P (x) = xr(xes + 1) is a permutation polynomial of Fq if and only if

c′∑

n=0

t(c
′)

n ac′j′s+n = (−1)c′+1 in Fp, for all c′ = 1, · · · , l − 1,

where {an}∞n=0 is the generalized Lucas sequence of order l−1
2 , j′(2eφ(l)−1r+s) ≡

1 (mod l), t
(c′)
n is the coefficient of xn in the Dickson polynomial of the first

kind of degree c′.

In particular, when l is a small prime (e.g. l = 3, 5, 7), the sequences {an} that
correspond to permutation binomials can be further described explicitly by using
the above conditions (see [2], [25]).
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Abstract. Single-track Gray codes are cyclic Gray codes with code-
words of length n, such that all the n tracks which correspond to the n
distinct coordinates of the codewords are cyclic shifts of the first track.
These codes have advantages over conventional Gray codes in certain
quantization and coding applications. We survey the main results on
this problem, their connections to sequence design, and discuss some of
the interesting open problems.

1 Introduction

Gray codes were found by Gray [3] and introduced by Gilbert [2] as a listing of
all binary n-tuples in a list such that any two consecutive n-tuples in the list
differ in exactly one position. Generalization of Gray codes were given during the
years. They include listing subsets of the binary n-tuples in a Gray code manner,
in such a way that the list has some prespecified properties. These properties
were usually forced by a specific application for the Gray code. An excellent
survey on Gray code is given in [6].

A single-track Gray code is a list of P distinct binary words of length n, such
that each two consecutive words, including the last and the first, differ in exactly
one position and when looking at the list as an P × n array, each column of the
array is a cyclic shift of the first column. These codes were defined by Hiltgen,
Paterson, and Brandenstini [4] who also gave their main application. A length
n, period P Gray code can be used to record the absolute angular positions of a
rotating wheel by encoding the codewords on n concentrically arranged tracks.
Then n reading heads, mounted in parallel across the tracks suffice to recover
the codewords. When the heads are nearly aligned with the division between
two codewords, any components which change between those words will be in
doubt and a spurious position value will result. Such quantization errors are
minimized by using a Gray code encoding, for then exactly one component can be
in doubt and the two codewords that could possibly result identify the positions
bordering the division, resulting in a small angular error. When high resolution
is required, the need for a large number of concentric tracks results in encoders
with large physical dimensions. This poses a problem in the design of small-scale
or high-speed devices. Single-track Gray codes were proposed in [4] as a way of
overcoming these problems.
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The aim of this note is to survey the known results on constructions for single-
track Gray codes, the properties of these codes, and nonexistence results, as well
as the main open problems in this topic.

2 Constructions, Properties, and Nonexistence Results

Let W = [w0, w1, . . . , wn−1] be a length n word. The cyclic shift operator, E,
is defined by EW = [w1, w2, . . . , wn−1, w0] and the complementary cyclic shift
operator Ē is defined by ĒW = [w1, w2, . . . , wn−1, w̄0], where b̄ is the binary
complement of b.

Let W be a length n word. The cyclic order of W is defined as

o(W ) = min{i : EiW = W, i ≥ 1}
The complementary cyclic order of W is defined as

ō(W ) = min{i : ĒiW = W, i ≥ 1}
If o(W ) = n then W has full-order and if ō(W ) = 2n then WW̄ is a full-order
self-dual word.

Let C be an ordered list of P length n

W0, W1, . . . , WP−1.

For each 0 ≤ i < P we denote the components of Wi as

Wi = [w0
i , w1

i , . . . , wn−1
i ].

The jth track of C, for 0 ≤ j < n, is defined as

tj(C) = [wj
0, w

j
1, . . . , w

j
P−1]

C has the single-track property if there exist integers

k0, k1, . . . , kn−1

called the head positions, where k0 = 0, such that ti(C) = Ekit0(C) for each
0 ≤ i < n. For each 0 ≤ i < n, ki is called the position of the ith head.

Let C be an ordered list of P length n

W0, W1, . . . , WP−1.

C is a length n, period P single-track Gray code if C is a cyclic Gray code and
C has the single-track property.

We can describe a length n period P Gray code as a sequence of P integers
taken from the set {1, 2, . . . , n}, where the consecutive integers point on the
number of the coordinate in which the two corresponding rows. The following
two properties are easy to verify:
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– The number of times each integer appears in the sequence is even.
– Any two integers appear the same number of times in the sequence.

These properties lead to the following theorem [4].

Theorem 1. For a length n period P single-track Gray code we have 2n divides
P and 2n ≤ P ≤ 2n.

Necklaces ordering

Let S0, S1 . . . , Sr−1 be r length n binary pairwise nonequivalent full-order words,
such that for each 0 ≤ i < r − 1, Si, and Si+1 differ in exactly one coordinate,
and there also exists an integer �, gcd(�, n) = 1, such that Sr−1 and E�S0 differ
in exactly one coordinate, then the following words form a length n, period nr
single-track Gray code

S0, S1, · · · Sr−1

E�S0, E�S1, · · · E�Sr−1

E2�S0, E2�S1, · · · E2�Sr−1

...
...

...
...

E(n−1)�S0, E(n−1)�S1, · · · E(n−1)�Sr−1

Self-dual necklaces ordering

Let S0, S1 . . . , Sr−1 be r length 2n self-dual pairwise nonequivalent full-order
words.

For each i, 1 ≤ i ≤ r − 1, let Si = [s0
i , s

1
i , . . . , s

2n−1
i ] and let

FjSi = [sj
i , s

j+1
i , . . . , sj+2n−1

i ]

where superscripts are taken modulo 2n.
If for each 0 ≤ i < r − 1, Si, and Si+1 differ in exactly two coordinates, and

there also exists an integer �, gcd(�, 2n) = 1, such that Sr−1 and E�S0 differ in
exactly one coordinate, then the following words form a length n, period 2nr
single-track Gray code

F0S0, F0S1, · · · F0Sr−1

F�S0, F�S1, · · · F�Sr−1

F2�S0, F2�S1, · · · F2�Sr−1

...
...

...
...

F(2n−1)�S0, F(2n−1)�S1, · · · F(2n−1)�Sr−1
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Let C be a length n, period P single-track Gray code, and let the head positions
be k0, k1, . . . , kn−1. C has k-spaced heads if

ki+1 ≡ ki + k (mod P )

for each 0 ≤ i ≤ n − 2.
Let C be a set of words. The cyclic order and complementary cyclic order of

C are defined as

o(C) = min{o(W ) : W ∈ C}

ō(C) = min{ō(W ) : W ∈ C}
The following three results on single-track Gray codes were given in [5].

Theorem 2. Let C be a length n period P single-track Gray code with k-spaced
heads.

– If k is even then
• gcd(k, P ) = P

o(C) .
• o(W ) = o(C) = n for each W ∈ C.
• There exists an ordering of P

o(C) length n necklace representatives of cyclic
order n, which satisfies the requirements of necklaces ordering.

– If k is odd then
• gcd(k, P ) = P

ō(C) .
• ō(W ) = ō(C) = 2n for each W ∈ C.
• There exists an ordering of P

ō(C) length 2n self-dual necklace represen-
tatives of cyclic order 2n, which satisfies the requirements of self-dual
necklaces ordering.

Lemma 1. If C is a length n period P single-track Gray code with k-spaced
heads, k odd, then each track of the code is self-dual.

Theorem 3. There is no ordering of all the 2n words of length n = 2m, m ≥ 2,
in a list which satisfies the following three requirements:

– Each two adjacent words have different parity.
– The list has the single-track property,
– each word appears exactly once.

Etzion and Paterson [1] gave several constructions of single-track Gray codes
obtained by necklaces ordering. One construction produces a special arrangement
of 2n−1r nonequivalent full-order words of length 2n, which satisfies certain
conditions (which are usually not difficult to satisfy), from a special arrangement
of r full-order words of length n which satisfies the same conditions. But, their
most impressive construction is optimal single-track Gray codes of length 2m,
m ≥ 3, which attain the bound implied by the nonexistence result of Theorem 3.
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Theorem 4. There exists an ordering of the self-dual necklaces of length 2n =
2m+1, m ≥ 3, from which we obtain a length n = 2m period 2n − 2n single-track
Gray code.

Schwartz and Etzion [5] gave another recursive construction based on the existing
of two single-track Gray of length n and period 2n − cn and length k and period
2k−ck, obtained by necklaces ordering, with certain properties (which are usually
not difficult to satisfy). The construction which is again obtained by necklaces
ordering has length nk and period 2nk − cnk where

cnk = 2nk(ck2−k + cn2−n − ckcn2−(n+k)).

If we further assume that we have sequences of single-track Gray codes such that

limn→∞
cn

2n
= 0 limk→∞

ck

2k
= 0

then we have

limn,k→∞
cnk

2nk
= 0.

3 Open Problems

The constructions for large period single-track Gray code require seed-codes with
large period. Constructions of such seed-codes is the major open problem in this
topic. If n = 2m then a construction of code with period 2n − 2n is known, but
there is no code with a larger period. The other values of n which is of special
interest are those when n is an odd prime number. In this case there are exactly
2n−2

n pairwise nonequivalent full-order words of length n. Can they be ordered
to form a period 2n − 2 single-track Gray code? We conjecture that the answer
is yes. This conjecture was verified to be true if n ≤ 13 [1] and we verified that
it is also true if n equals either 17 or 19. A general construction of this sort will
be a major breakthrough.
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Abstract. We study the asymptotic behavior of stream cipher security
measures associated with algebraic feedback shift registers and feedback
based on the ring Z[

√
−2]. For non-periodic sequences we consider nor-

malized
√

2-adic complexity and study the set of accumulation points for
a fixed sequence. The the set of accumulation points is a closed subin-
terval of the real closed interval [0, 1]. We see that this interval is of the
form [B, 1 − B] “most” of the time, and that all such intervals occur for
some sequence.

Keywords:Sequences, N-adic complexity, Stream ciphers, shift registers.

1 Introduction

The purpose of this paper is to study the asymptotic behavior of security or
randomness measures for infinite sequences. The kinds of measures we are inter-
ested in arise in the following manner. There is a class G of finite state devices
that generate infinite sequences over some alphabet Σ, such that every eventu-
ally periodic sequence is generated by at least one element of G. We also assume
there is a notion of the size of a generator in G, a positive real number. In gen-
eral this measure should be close to the number, n, of elements of Σ needed
to represent a state of the generator. Typically “close” means differing from n
by at most O(log(n)). Examples of such classes of generators include the linear
feedback shift registers (LFSRs), where the size of an LFSR is the number of
cells, and feedback with carry shift registers (FCSRs) [7], where the size of an
FCSR is the log of the connection number (the log with base equal to the size
of the output alphabet).
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We denote by λG(S) the minimum size of a generator in G that outputs the
eventually periodic sequence S. In many cases there is an algorithm that effi-
ciently finds the minimum size generator of S given a prefix of S whose length
is a small (typically linear) function of λG(S). We call this a G-synthesis algo-
rithm. Examples include the Berlekamp-Massey algorithm for LFSRs [10] and
the 2-adic rational approximation algorithm for FCSRs [7]. When a G-synthesis
algorithm exists, the quantity λG(S) is a measure of the security of S.

Many sequences cannot be generated by a generator in G. For LFSRs and
AFSRs, these are exactly the sequences that are not ultimately periodic (but
this is not so in general). For such sequences S the measure λG(S) is undefined.
However, we can apply the measure to the various prefixes of S and try to
understand the asymptotic behavior. For n > 0, let λG

n(S) denote the minimum
size of a generator from G that outputs the first n symbols of S as its first
n outputs. The sequence of numbers (λG

n(S) : n = 1, 2, · · · ) is called the G-
complexity profile of S. For a sequence that cannot be generated by a generator
in G, the limit of the λG

n(S) is infinite, so we normalize the measure by letting
δGn(S) = λG

n(S)/n. For the typical measures we are interested in we have

λG
n(S) ≤ n + O(log(n)),

so that
0 ≤ δG

n (S) ≤ 1 + o(n).

In particular, the limsup of the δG
n (S) is at most 1. In general the δGn(S) do not

have a single limit, but rather have a set T (S) of accumulation points. Our goal
is to determine what sets of accumulation points are possible.

It is immediate for such a measure λG
n(S) that

λG
n+1(S) ≥ λG

n(S)

for all n ≥ 1, so that

δGn+1(S) ≥ n

n + 1
δGn(S) ≥ δGn (S) − 1

n + 1
. (1)

This allows us to show that the set of accumulation points is a closed interval [5].

Theorem 1. Let {λn : n = 1, 2, ∞} be a sequence of integers, 1 ≤ λn ≤ n,
satisfying λn ≤ λn+1 for all n = 1, 2, · · · . Let δn = λn/n ∈ [0, 1]. Then the set T
of accumulation points of the δn is a closed real interval [B, C] = {a ∈ R : B ≤
a ≤ C}.
Dai, Jiang, Imamura, and Gong studied this problem in the case when G is the set
of LFSRs over F2, the finite field with two elements, and λG is linear complexity
[3]. They showed that in this case T (S) is an interval of the form [B, 1 − B],
with 0 ≤ B ≤ 1/2. They also showed that for every such B there are sequences
S with T (S) = [B, 1 − B]. Dai, Imamura, and Yang, and Feng and Dai have
also studied this problem for vector valued non-periodic sequences [2,4]. In this
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setting, however, there are much more limited results. They showed that there
is a number associated with the generalized continued fraction expansion of a
multisequence that is a lower bound for the maximum accumulation point and
an upper bound for the minimum accumulation point. The author of the current
paper studied this problem for FCSRs based on N -adic numbers, where N is a
positive integer [5]. He showed that if N is a power of 2 or 3, then T (S) is an
interval of the form [B, 1 − B], with 0 ≤ B ≤ 1/2. However, for more general N
it was only shown that T (S) is an interval of this form if the least accumulation
point B satisfies B ≤ logN (2). It is unknown what can happen if B > logN(2).

The primary goal of this paper is to do a similar analysis for π-adic complexity,
where π2 = −p and p is a positive square-free integer greater than 1. Let R =
Z[π] = Z + Zπ.

Consider the alphabet Σ = {0, 1, · · · , p − 1}. Recall that π-adic complexity
is the security measure for p-ary sequences associated with the set G of π-ary
algebraic feedback shift registers (AFSRs) [7,8,9]. Such a register (with a partic-
ular initial state) can be identified with an element a/b with a, b ∈ R = Z[π] in
much the same way that a linear feedback shift register can be identified with a
rational function a(x)/b(x). The output sequence is then the π-adic expansion
of a/b,

a

b
=

∞∑

i=0

siπ
i. (2)

We denote the set
{ ∞∑

i=0

siπ
i : si ∈ {0, 1, · · · , N − 1}

}

of π-adic numbers by Rπ. It is well-known that Rπ is an algebraic ring. We have
the usual algebraic norm function N from R to Z: if u, v ∈ Z then N(u + vπ) =
u2 + pv2 [1]. For a pair of elements x, y ∈ R, let Φ(x, y) = max(N(x), N(y)) and
λ(x, y) = logp(Φ(x, y)).

Let D be an AFSR that outputs a sequence S from initial state σ. We write
D(σ) = S. Let μ(D, σ) denote the number of p-ary cells required to represent
all states in the infinite execution of D with initial state σ.

Theorem 2. Let S be a p-ary sequence generated by an AFSR D over R and
π with connection element b. Then

∑∞
i=0 siπ

i = a/b, for some a ∈ R. We have
|μ(D, σ) − λ(a, b)| ≤ logp(λ(a, b)).

We take λ(a, b) as a measure of the size of the generator of S. It is a security
measure in the sense that p-ary sequences generated by AFSRs with small λ(u, q)
are insecure. We further let Φn(S) denote the least Φ(a, b) such that

a

b
≡

∞∑

i=0

siπ
i (mod πn)

and let λn(S) = logp(Φn(S)). Let δn(S) = λn(S)/n. Also, we let Φ(S) denote
the least Φ(a, b) so that equation (2) holds, if such a pair a, b exists. We let
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Φ(S) = ∞ otherwise. Let λ(S) = logp(Φ(S)), the π-adic complexity of S. The
sequence of numbers (λ1(S), λ2(S), · · · ) is called the π-adic complexity profile of
S. We can take

a =
n−1∑

i=0

siπ
i, b = 1

so that a/b ≡ ∑∞
i=0 siπ

i (mod πn). Let a = a0 + aiπ with ai ∈ Z. Then

a0 ≤
{

pn/2 − 1 if n is even
p(n+1)/2 − 1 if n is odd,

and a1 ≤
{

pn/2 − 1 if n is even
p(n−1)/2 − 1 if n is odd.

Thus

Φn(S) ≤ N(a) =
{

(p + 1)(pn/2 − 1)2 if n is even
(p(n+1)/2 − 1)2 + p(p(n−1)/2 − 1)2 if n is odd.

}
≤ (p + 1)pn.

Therefore λn(S) < logp((p + 1)pn) = n + logp(p + 1) and lim sup(δn(S)) ≤ 1.
There is an effective register synthesis algorithm for these AFSRs [9], so π-adic
complexity is an important security measure for p-ary sequences.

2 Basic Lemmas

Let p be a positive square free integer and let π2 = −p. Our goal is to find
the structure of the set Tπ(S) of accumulation points of the normalized π-adic
complexity profile of an ultimately nonperiodic sequence S. In this section we
develop technical tools do this.

If S is ultimately periodic, then Φn(S) is constant for n sufficiently large, so
the limit of the δn(S) exists and is zero. Therefore from here on in this section
we assume that S is not ultimately periodic.

Lemma 1. For any a, b ∈ R we have

1. N(a) ≥ 0 and N(a) = 0 if and only if a = 0.
2. N(a) = 1 if and only if a is a unit in R if and only if a ∈ {1, −1}.
3. N(π) = p.
4. N(ab) = N(a)N(b).
5. N(a + b) ≤ N(a) + N(b) + 2(N(a)N(b))1/2 = (N(a)1/2 + N(b)1/2)2 ≤

4 max(N(a), N(b)).

Proof: All but the last statement are standard. Let a = a0+a1π and b = b0+b1π,
a0, a1, b0, b1 ∈ Z. Then N(a + b) = (a0 + b0)2 + p(a1 + b1)2 = N(a) + N(b) +
2(a0b0 + pa1b1). We have 0 ≤ (a1b0 − a0b1)2 = a2

1b
2
0 + a2

0b
2
1 − 2a0a1b0b1. Thus

2a0a1b0b1 ≤ a2
1b

2
0 + a2

0b
2
1. Therefore

(a0b0 + pa1b1)2 = a2
0b

2
0 + 2pa0a1b0b1 + p2a2

1b
2
1

≤ a2
0b

2
0 + p(a2

1b
2
0 + a2

0b
2
1) + p2a2

1b
2
1

= N(a)N(b).

Hence a0b0 + pa1b1 ≤ (N(a)N(b))1/2 and the lemma follows. �



138 A. Klapper

Lemma 2. If p = 2, then for every a, b ∈ R with b �= 0, there exist q, r ∈ R so
that a = qb + r and N(r) < (3/4)N(b).

In particular R is a Euclidean domain and hence a GCD domain. Thus it makes
sense to speak of the greatest common divisor of a pair of elements. Lemma 2 is
false for all p > 2.

We need a lemma to bound δn+1(S) in terms of δn(S).

Lemma 3. Suppose that Φn+1(S) > Φn(S).

1. We have
pn

4Φn(S)
≤ Φn+1(S)

Therefore
n − logp(4)

n + 1
− n

n + 1
δn(S) ≤ δn+1(S).

2. If p = 2, then

Φn+1(S) ≤ 3Φn(S)
2

+
2n

Φn(S)
+

√
6 · 2n/2.

3. If p = 2, then for all ε > 0, if n is sufficiently large and δn(S) > max(1/2 +
ε, log2(3(1 + 2ε)/2)), then δn+1(S) < δn(S).

Proof: Let
a

b
≡

∞∑

i=0

siπ
i (mod πn) (3)

with b a unit modulo π and Φ(a, b) = Φn(S). By the assumption that Φn+1(S) >
Φn(S), equation (3) does not hold modulo πn+1. Thus for some v ∈ R with v
not divisible by π we have

a

b
≡ vπn +

∞∑

i=0

siπ
i (mod πn+1).

Suppose also that
c

d
≡

∞∑

i=0

siπ
i (mod πn+1)

with d a unit modulo π and Φ(c, d) = Φn+1(S). Then

a

b
≡ c

d
+ vπn (mod πn+1).

It follows that ad − bc ≡ bdvπn (mod πn+1). Since v is nonzero, we have

pn = N(πn) ≤ N(ad − bc) ≤ 4Φn(S)Φn+1(S).

This implies the lower bound in the first assertion. The lower bound on δn+1(S)
follows by taking logarithms and dividing by n + 1.
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To obtain an upper bound on Φn+1(S) with p = 2, we construct a “pretty
good” rational approximation modulo πn+1. Then Φn+1(S) is upper bounded
by the value of Φ on this approximation. Note that a and b have no nontrivial
common divisors: if they did, then we could factor out a common factor and
reduce Φ(a, b). Also, v = 1 since p = 2.

First assume that 0 < N(b) ≤ N(a). Since aπ and b have no common divisors
and R is a Euclidean domain, there exist e, f ∈ R so that

aπe − bf = πn − a. (4)

Let g = 1 + πe, so that g ≡ 1 (mod π) and

ag − bf = πn. (5)

It then follows that ag − bf = πn ≡ bvgπn (mod πn+1), since b ≡ 1 (mod π).
Thus

a

b
− f

g
≡ πn (mod πn+1),

so
f

g
≡

∞∑

i=0

siπ
i (mod πn+1),

and g is a unit modulo π. Therefore Φ(f, g) is an upper bound for Φn+1(S).
In fact there are many choices for (f, g) satisfying equation (5). By the relative
primality of aπ and b, the solutions to equation (5) with g ≡ 1 (mod π) are
exactly the pairs (f, g) = (f0, g0) + (raπ, rbπ) where (f0, g0) is a fixed solution
and r ∈ R. In particular, we can take N(f) < (3/4)N(aπ) = (3/2)Φn(S). We
then have ag = bf + πn so that

N(g) ≤ N(bf) + N(πn) + 2N(bf)1/2N(πn)1/2

N(a)

≤ 3N(b)
2

+
2n

N(a)
+

√
6 · 2n/2

≤ 3Φn(S)
2

+
2n

Φn(S)
+

√
6 · 2n/2.

Therefore

Φn+1(S) ≤ 3Φn(S)
2

+
2n

Φn(S)
+

√
6 · 2n/2. (6)

This proves the second assertion when N(b) ≤ N(a).
Now let 0 < N(a) < N(b). As in the previous case there are integers g = 1+πe

and f with ag − bf = πn. By adding a multiple of (bπ, aπ) to the pair (g, f), we
may assume that N(g) < 3N(bπ)/4 = 3Φn(S)/2. It follows that

N(f) ≤ 3Φn(S)
2

+
2n

Φn(S)
+

√
6 · 2n/2.
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Finally we prove the third assertion. Let ε > 0 and suppose that δn(S) >
max(1/2 + ε, log2(3(1 + 2ε)/2)). Take n large enough that

n >
log2(8/(3ε2))

2ε
. (7)

From δn(S) > (1/2) + ε and equation (7) it then follows that

2n

Φn(S)
< ε

3Φn(S)
2

and √
6 · 2n/2 < ε

3Φn(S)
2

.

Also, from δn(S) > log2(3(1 + 2ε)/2) it follows that

(1 + 2ε)
3Φn(S)

2
< Φn(S)(n+1)/n.

It then follows that

Φn+1(S) ≤ 3Φn(S)
2

+
2n

Φn(S)
+

√
6 · 2n/2

≤ (1 + 2ε)
3Φn(S)

2
< Φn(S)(n+1)/n.

Taking logarithms and dividing by n + 1 then gives δn+1(S) < δn(S) as desired.
�

This will suffice to characterize sets [B, C] of accumulation points of normalized
π-adic complexities of sequences when p = 2 and

1 − B ≥ lim
ε→0

max
(

1
2

+ ε, log2(3(1 + 2ε)/2)
)

= max
(

1
2
, log2(3/2)

)
.

This is equivalent to having B ≤ min(1/2, log2(4/3)) = log2(4/3) ∼ 0.415.

3 Sets of Accumulation Points

Let S be an ultimately non-periodic π-ary sequence. In this section we show that
in many cases the set of accumulation points Tπ(S) satisfies Tπ(S) = [B, 1 − B]
for some B. Let Tπ(S) = [B, C]. Let m1, m2, · · · be a sequence of indices such
that B = limn→∞ δmn(S). If λn+1(S) = λn(S), then δn+1(S) < δn(S). If we
replace mn by the next index j so that λj(S) < λj+1(S), then the resulting
sequence will have a limit D ≤ B. Since B is the minimal accumulation point of
the δi(S), D = B. Therefore we may assume that λmn(S) < λmn+1(S).
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Lemma 4. Let B < 1/2. Then

lim
n→∞ δmn+1 ≥ 1 − B.

If p = 2, then
lim

n→∞ δmn+1 = 1 − B.

Proof: Let 0 < ε < 1/2 − B. Take n large enough that mn ≥ 6/ε and |B −
δmn(S)| < min(ε/2, (1 − 2B)/4). Then δmn(S) < 1/2 and by Lemma 3.1

1 − B − δmn+1(S) ≤ 1 − B −
(

mn − 2
mn + 1

− mn

mn + 1
δmn(S)

)

= (δmn(S) − B) +
3 − δmn(S)

mn + 1
≤ ε.

This proves the first statement.
Now suppose p = 2. Then δmn(S) < 1/2 implies that

3
2
Φmn(S) <

3 · 2mn

2Φmn(S)
and

√
6 · 2mn/2 <

√
6 · 2mn

Φmn(S)
.

Thus by Lemma 3.2 we have

Φmn+1(S) <
(3 +

√
6)2mn

Φmn(S)
.

Thus
λmn+1(S) < mn + log2(3 +

√
6) − λmn(S),

so

δmn+1(S) − (1 − B) ≤ mn + log2(3 +
√

6)
mn + 1

− mn

mn + 1
δmn(S) − (1 − B)

< (B − δmn(S)) +
log2(9/2) + δmn(S)

mn + 1

≤ ε.

Thus |1 − B − δmn+1(S)| < ε for n sufficiently large, proving the lemma. �

Corollary 1. In general 1 − B ≤ C and 1/2 ≤ C.

Proof: By Lemma 4, if B < 1/2, then 1 − B > 1/2 is an accumulation point. If
B ≥ 1/2, then C ≥ B ≥ 1/2 ≥ 1 − B. In either case C ≥ 1 − B and C ≥ 1/2. �

We can now prove our main result.
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Theorem 3. Let S be a binary sequence (i.e., p = 2) and suppose that the set
of accumulation points of the set of δn(S) is the interval [B, C] = {a ∈ R :
B ≤ a ≤ V }. Then B ≤ log2(3/2). If B < log2(4/3) then C = 1 − B. That is,
Tπ(S) = [B, 1 − B].

Proof: There is a sequence of integers 	1 < 	2 < · · · such that limn→∞ δ�n(S) =
C and we can assume that |C − δ�n(S)| > |C − δ�n+1(S)| for all n. By possibly
deleting some of the 	n and mn, we can assume that mn < 	n < mn+1 for all
n ≥ 1. For n sufficiently large we have δmn < δ�n , so we can assume this holds
for all n ≥ 1. Thus there is an 	 ≤ 	n so that δ�−1(S) < δ�(S). If we replace
	n by the largest such 	, then we still have a sequence whose limit is C. So we
can assume that δ�n−1(S) < δ�n(S) for all n. In particular, Φ�n−1(S) < Φ�n(S).
Then by Lemma 3.3, for every ε > 0 if n is sufficiently large, then

δ�n−1(S) < max(1/2 + ε, log2(3(1 + 2ε)/2)). (8)

This implies that there is an accumulation point of the δn(S) that is less than
or equal to max(1/2, log2(3/2)) = log2(3/2), so B ≤ log2(3/2). This proves the
first statement.

To prove the second statement, let us assume to the contrary that 1 − B < C
and that B ≤ log2(4/3) < 1/2. Thus C > 1− log2(4/3) = log2(3/2). By part (1)
of Lemma 3,

Φ�n(S)≤ 3Φ�n−1(S)

2
+

2�n−1

Φ�n−1(S)
+
√

6·2(�n−1)/2 ≤3max

(
3Φ�n−1(S)

2
,

2�n−1

Φ�n−1(S)
,
√

3·2�n/2
)
.

Thus

δ�n(S)≤ max
(

	n − 1
	n

δ�n−1(S)+
log2(9/2)

	n
, 1 − 	n − 1

	n
δ�n−1(S)+

log2(3/2)
	n

,

1
2

+
log2(3

√
3)

	n

)
. (9)

There are three cases to consider, depending on which term is maximal.
Suppose that

δ�n−1(S) ≤ 1
2

− log2(6)
2(	n − 1)

.

Then the right hand side of equation (9) equals the second term, so

δ�n−1(S) ≤ 	n

	n − 1
− 	n

	n − 1
δ�n(S) +

log2(3/2)
	n − 1

.

If this occurs for infinitely many n, then the set {δ�n−1(S) : n ≥ 1} has an
accumulation point less than or equal to

lim
n→∞

	n

	n − 1
− 	n

	n − 1
δ�n(S) +

log2(3/2)
	n − 1

= 1 − lim
n→∞ δ�n(S) = 1 − C < B.
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This is a contradiction, so (by possibly deleting finitely many 	ns) we may assume
that δ�n−1(S) > 1/2 − √

6/(	n − 1) for every n.
Suppose that

1
2

− log2(6)
2(	n − 1)

< δ�n−1(S) ≤ 1
2

+
log2(12)
2(	n − 1)

.

Then the right hand side of equation (9) equals the third term, so

δ�n(S) ≤ 1
2

+
log2(3

√
3)

	n
.

If this occurs for infinitely many n, then

C = lim
n→∞ δ�n(S) ≤ lim

n→∞
1
2

+
log2(3

√
3)

	n
=

1
2

< C.

This is a contradiction, so (by possibly deleting finitely many 	ns) we may assume
that

δ�n−1(S) >
1
2

+
log2(12)
2(	n − 1)

for every n.
Thus the right hand side of equation (9) equals the first term, and

C = lim
n→∞ δ�n(S) ≤ lim

n→∞
	n − 1

	n
δ�n−1(S) +

log2(9/2)
	n

= lim
n→∞ δ�n−1(S).

But C is the maximum accumulation point of the δi(S), so in fact
limn→∞ δ�n−1(S) = C.

It then follows from equation (8) that C ≤ max(1/2, log2(3/2)) = log2(3/2),
which is a contradiction. �

4 Existence Results for Tπ(S)s

In this section we return to the general setting where p ≥ 2 is a square free
positive integer and π2 = −p. Thus we are now considering sequences over the
more general set {0, 1, · · · , p − 1}, and we are considering π-adic complexity
based on the more general ring R = Z[

√−p]. We denote by βπ the function
that associates the real number B with the sequence S, where Tπ(S) = [B, C].
That is,

β : {S = s0, s1, · · · , si ∈ {0, 1}} → [0, 1]

and βπ(S) is the least accumulation points of the set of normalized π-adic com-
plexities of prefixes of S. In this section we see that the image of β contains
[0, 1/2].

Theorem 4. For every p ≥ 2 and every B ∈ [0, 1/2] there is a p-ary sequence
S with Tπ(S) = [B, C] for some C. If p = 2, then we can take C = 1 − B.
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Proof: Let 0 ≤ B < 1/2. We build S with β(S) = B in stages. Suppose
that we have chosen n1 ≤ n2 ≤ · · · ≤ nr ∈ Z

+ and Snr = s0, · · · , snr−1 ∈
{0, 1, · · · , p − 1} so that

|δni(S) − B| ≤ 1
ni

,

δni(S) ≤ B < δj(S) for ni < j < ni+1, and

n1 > max
(

1 + logp(4)
1 − 2B

,
B + 1
1 − 2B

)
. (10)

Choose snr so that Φnr+1(S) �= Φnr (S). Some care must be taken here to see
that this is in fact possible. Suppose that a/b, a, b ∈ R with π invertible modulo
b, is the rational approximation to

∑r−1
i=0 siπ

i modulo πnr so that Φ(a, b) is
minimal. Suppose also that a/b ≡ ∑nr−1

i=0 siπ
i +s′nr

πnr (mod πnr+1). We choose
snr �= s′nr

. Then the bound in equation (10) and the fact that Φ(a, b) < pnrB+1

ensure that there are not integers c and d so that c/d ≡ ∑nr

i=0 siπ
i (mod πnr+1)

with Φ(a, b) = Φ(c, d). That is, the π-adic complexity profile must increase at
this point. By Lemma 3.1,

δnr+1(S) >
nr − 1
nr + 1

− nr

nr + 1
δnr(S)

≥ nr − 1
nr + 1

− nr

nr + 1
B

> B,

where the last inequality follows from equation (10). As in the proof of Lemma 4,
the limit of the δnr+1 is at least 1−B. If p = 2, then the limit of the δnr+1 is exactly
1 − B.

Now choose nr+1 and snr+1, · · · , snr+1−1 so that Φnr+1(S) = · · · = Φnr+1(S)
and δnr+1(S) ≤ B < δnr+1−1(S). This is possible since the δj(S) are decreasing
with limit 0 if the Φj(S) are unchanged. Moreover, for any j such that Φj+1(S) =
Φj(S), we have λj+1(S) = λj(S) and

δj(S) − δj+1(S) =
λj(S)

j
− λj(S)

j + 1

=
λj(S)

j(j + 1)

≤ 1
j + 1

.

It follows that B − 1/nr+1 < δnr+1(S) < B. Thus B = limi→∞ δni(S). It also
follows that B is the least accumulation point of the δj(S). Also, as in the proof
of Lemma 4, the limit of the δnr+1 is at least 1 − B. If p = 2 the limit equals
1 − B, the maximum accumulation point.

Finally, let B = 1/2. We construct S a term at a time as follows. If δr(S) <
1/2 − 2/r, then choose sr so that Φr(S) �= Φr+1(S). As before, we have made
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δr(S) small enough that Φr(S) �= Φr+1(S) if we choose the “wrong” sr. If
δr(S) ≥ 1/2 − 2/r, then choose sr so that Φr(S) = Φr+1(S). We claim that
limr→∞ δr(S) = 1/2, so that 1/2 is the only accumulation point.

Let r be an arbitrary index. If δr(S) ≥ 1/2 − 2/r, then δr+1(S) ≥ 1/2 −
3/(2(r + 1)), which guarantees that the least accumulation point is at least 1/2.
If δr(S) < 1/2 − 2/r, then

δr+1(S) >
r − 1
r + 1

− r

r + 1
δr(S)

>
r − 1
r + 1

− r

r + 1

(
1
2

− 2
r

)

=
1
2

+
1

2(r + 1)
.

On the other hand, suppose δr(S) > 1/2 + 1/r. Then

δr+1(S) =
r

r + 1
δr(S) >

1
2

+
1

2(r + 1)
.

If we apply our constructions and δj(S) > 1/2 − 2/j for j = r, r + 1, · · · , k for
some k, then

δk(S) =
r

k
δr(S).

Thus after finitely many steps we reach a k for which δk(S) < 1/2 − 2/k. (In
fact the first k for which δk(S) ≤ 1/2 is at most k = 2(r + 2).) We have shown
that δr(S) ∈ [1/2 − 1/r, 1/2] for infinitely many r, and that δr(S) > 1/2 − 1/r
for all r. Thus B = 1/2 is the least accumulation point. Again, as in the proof
of Lemma 4, if p = 2, then the limit of the δr+1 for which Φr(S) �= Φr+1(S) is
1 − 1/2 = 1/2 and this is the maximum accumulation point. This completes the
proof. �

Note that if we modify this construction so that the the N -adic complexity
changes when δnr (S) < δnr−1(S) < B < δnr−2(S), then B is still the least
accumulation point. In fact, at each phase we can either use this method or the
one in the proof to determine when to change the N -adic complexity. Since there
are infinitely many phases, this gives uncountably many sequences for which B
is the least accumulation point.

Corollary 2. For any B with 0 ≤ B ≤ 1/2, there are uncountably many se-
quences S with β(S) = B. If p = 2, then there are uncountably many sequences
S with Tπ(S) = [B, 1 − B].

5 Conclusions

We have found constraints on the possible sets of accumulation points of the
normalized π-adic complexities of non-periodic sequences. This gives us a fuller
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understanding of the properties of these security measures. It provides another
in a growing list of ways that feedback with carry shift registers are similar
to linear feedback shift registers, although here we see that precise analysis
depends on strong number theoretic properties of the ring R. There are also
practical implications to this and earlier work on linear and N -adic complexity.
Suppose a stream cipher uses an infinite non-periodic sequence S as a keystream
(of course one may question whether such a keystream possible since no finite
state device can output a nonperiodic sequence), and suppose that the set of
accumulation points of the normalized π-adic or linear complexity is [B, 1 − B].
Now imagine a cryptanalyst who has observed a prefix of S and wants to predict
the next symbol. If the normalized complexity up to this point is close to B,
the next symbol is likely to change the complexity so the normalized complexity
increases. Likewise, if the normalized complexity up to this point is close to
1 − B, then the next symbol is likely to leave the complexity unchanged so the
normalized complexity decreases. In this sense sequences for which the set of
accumulation points is [0, 1] are the most random sequences.

We would like to know whether T (S) is of the form [B, 1−B] for all p and all
S. Even this is just a start — the same questions can be asked for every setting
R, π for which we have algebraic feedback shift registers. Moreover, as with linear
complexity we can consider the asymptotic π-adic complexity of multi-sequences.
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Shannon Capacity Limits of Wireless Networks

Andrew Viterbi
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Abstract. Two wideband physical-layer multiple access techniques for
mobile telephony and data are compared: CDMA, which in one of several
manifestations has been chosen for virtually all third generation cellular
systems, and OFDM with MIMO, which seems to be the most favored for
a future generation. We compare the Shannon capacities of the two and
conclude that with appropriate processing CDMA and OFDM capacities
are similar but that the latter may more effectively be combined with
MIMO antennas to provide higher capacities.

1 Summary

The physical layer of wireless networks has evolved through three generations in
less than three decades. As we approach the fourth decade of cellular wireless
service, yet a fourth generation is being proposed. Table 1 summarizes the tech-
nologies adopted for each generation whose evolution lasted approximately one
decade between initial deployment and maturity at which time a new generation
arose. Currently advanced versions of Code Division Multiple Access (CDMA-
EVDO and W-CDMA) are reaching maturity. While through further improve-
ments these are likely to retain major market shares for the next decade, an
alternate technology, orthogonal frequency division multiplexing (OFDM), also
known by its trade name Wi-MAX, is taking hold. Along with multiple antennas,
referred to as multiple-in multiple-out (MIMO) systems, this seems to be favored
for future deployments. Table 1 also provides an estimate of the bandwidth ef-
ficiency of each generation. The last entry depends strongly on the success of
MIMO to provide a capacity enhancement nearly proportional to the number of
antenna pairs, which will be discussed in the last section. In the following three
sections we consider the capacity of single- versus multiple-carrier systems, first
in multipath-fading and then in the presence of multiple-user interference. We
then turn to multiple antennas and consider their possible enhancement of both
types of systems.

Table 1. Cellular Generations

Decade Generation Efficiency: bps/Hz/sector

1980’s 1G Analog Cellular .016

1990’s 2G Digital (TDMA→CDMA) .05 → .2

2000’s 3G Enhanced CDMA .4 → .6

2010’s 4G OFDM/MIMO > 1.0

S.W. Golomb et al. (Eds.): SSC 2007, LNCS 4893, pp. 147–152, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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All comparisons throughout will be in terms of the Shannon capacity of each
system, as justified by the following three considerations:

a) It represents a hard upper limit on throughput performance;
b) This limit is almost achievable, if we allow for some processing delay, by

LDPC and Turbo codes;
c) For Gaussian interference, a reasonable model for wideband channels, the

capacity expression is simple: C = W log(1 + S/I), where C is capacity in
bits/sec., W is bandwidth in Hz and S/I is signal-to-interference ratio.

2 Capacities in Multipath-Fading Channels

Figure 1 shows the models for single-carrier and multiple-carrier channels. The
time model better suits the former while the frequency model better suits the
latter. An example of a single-carrier system is CDMA, while OFDM is
the embodiment of a multiple carrier system. In all cases, we may assume that
the channel parameters are known at the receiver through measurements on pi-
lot signals. The optimum receiver for the time model is a matched filter (or rake
receiver), while for the frequency model it is a bank of receivers each tuned to
the appropriate frequency and appropriately scaled. The tap-coefficients hj are
related to the frequency gains kn by the discrete Fourier transform

kn =
L−1∑

j=0

hj exp(−2πinj/L). (1)

Fig. 1. Multipath-Fading Channel
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The power relations between the two sets follow (provided N is a multiple of L,
an easily accommodated condition):

N−1∑

n=0

|kn|2/N =
L−1∑

j=0

|hj |2, (2)

which is just the discrete form of Parseval’s Theorem. From this and Jensen’s
Inequality for convex functions, we may compare the capacities of single- and
multiple-carrier systems, which we label CC and CO (for CDMA and OFDM
respectively),

CC = W log

⎡

⎣1 + (S/I)
L−1∑

j=0

|hj |2
⎤

⎦ , (3)

while using Jensen’s Inequality and Parseval’s Theorem,

CO = (W/N)
N−1∑

n=0

log
[
1 + (S/I)|kn|2]

≤ W log

[
1 + (S/I)

N−1∑

n=0

|kn|2/N
]

= CC . (4)

Note, however, that for small values of S/I the logarithms approach linear func-
tions and hence the inequality approaches an equality.

While this appears to show an advantage for CDMA over OFDM, the tables
appear to be turned when other-user interference is considered.

3 Capacities in the Presence of Other-User Interference

Without loss of generality we may let the total powers (2) in the tap coefficients
(or in the normalized frequency multipliers) be set at unity, tantamount to con-
sidering them part of the received signal power. Assume further for the sake of
simple comparison that all user signals are power controlled so that they arrive
at the base station with equal powers S and that the user population is uniformly
distributed with M users occupying each cell (or sector). Then CDMA in which
each user occupies the total spectrum will have M − 1 interfering users in its
own cell and M users in all other cells. It has been shown [1] that because of the
increased distances from the base station, the totality of other-cell interference is
equivalent to the power from ρM users in the given cell, where depending on the
propagation law, ρ lies between 0.6 and 1.0 [1]. Consequently, since all same-cell
users are power controlled to the same level, the total interference in CDMA is
I = (M −1)S +ρMS ∼ (1+ρ)MS. Thus for CDMA, S/I ∼ 1/[(1+ρ)M ]. Since
this is very small, we may linearize the logarithm so that the per-user capacity
becomes W/[(1+ρ)M ln(2)]. The total throughput per cell (or sector) for CDMA
for all M users becomes M times this,

CC Total ∼ W/[(1 + ρ) ln(2)]. (5)
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For OFDM, on the other hand, each same-cell user can be assigned a unique set of
carriers (changed on each successive symbol), so that only other-user interference
affects each user. In that case, each user occupies only W/M Hz and is affected
by 1/Mth of the interference, so S/I = 1/ρ and the total OFDM throughput
per cell (or sector) for all M users becomes

CO Total ∼ W log[1 + (1/ρ)]. (6)

Consequently, for values of ρ in the range of 0.6 to 1.0, OFDM capacity exceeds
that of CDMA. We next show how CDMA may be redeemed by successive
interference cancellation.

4 CDMA with Successive Interference Cancellation

By a process of successive cancellation, CDMA can achieve the same total
throughput capacity as OFDM. Suppose the Mth user is demodulated and de-
coded. As long as its rate is below its capacity as determined by its S/I, the
result should be correct. Then if it is re-encoded, remodulated and subtracted
from the composite received signal, its effect will be removed from the inter-
ference to the other users. This is then repeated M − 2 more times with the
result that the mth user will only be affected by m − 1 same-cell user interfer-
ence along with that of all users in all other cells. We take the total other-cell
interference as before to be ρMS, so the interference seen by the mth user will
be (m − 1)S + ρMS.

Then letting individual rates approach capacity, the rate for the mth user
will be

Rm/W = log{1 + S/[ρMS + (m − 1)S]} = log{[ρM + m]/[ρM + (m − 1)]}.

Since the sum of logs equals the log of the product and all successive terms of
the product will cancel except the numerator of the first and the denominator
of the last, the total throughput per cell (sector) becomes

CC =
M∑

m=1

Rm = W log[(ρM + M)/ρM ] = W log[1 + (1/ρ)] = CO. (7)

The drawback, however, is that the rates are all different with the Mth user’s
smallest and the rest growing as m decreases. All rates can be made equal by
varying signal powers, but then these will grow almost exponentially. A tech-
nique which achieves equal rates with equal powers is illustrated for M = 3
users in Figure 2. Here the users are staggered in time and decoded and can-
celled in the order shown. Since 1/3 of the time they see only other-cell inter-
ference, 1/3 one other user along with other-cell and 1/3 two other users along
with other-cell interference, all users achieve the same rate with the same power.



Shannon Capacity Limits of Wireless Networks 151

Stagger User Packets (example for 3 users)

Cm = (W/3)

[
log(1 + S/I) + log(1 +

S/I

1 + S/I
) + log(1 +

S/I

1 + 2S/I
)

]

= (W/3) log(1 + 3S/I); m = 1, 2, 3

CTotal = W log(1 + 3S/I)

Fig. 2. Equal Rates with Equal Powers

Then extending to M staggered users, with I = MSρ, the expression for total
throughput capacity in Figure 2 generalizes to:

CC =
M∑

m=1

Rm = W log[1 + MS/I] = W log[1 + (1/ρ)] = CO. (8)

5 Multiple-Input Multiple-Out (MIMO) Antenna
Systems

The added dimensions provided by MIMO antenna systems can be employed to
provide redundancy to mitigate fading or to increase data rates, or a combination
of both. Since our focus here is on capacity, we consider only the increased rate
capability. For simplicity of discussion we shall take the number of transmit and
receive antennas to be equal to NA, though this is not necessary in general.
Letting x be the NA inputs and y the NA outputs, the input-output relations
are given by the vector equation

y = Hx + w,

where H is the NA × NA transfer matrix of channel gains and w is the vector
of noises at the receiver. Employing the Singular Value Decomposition theorem,
H can be written as

H = UΛV ∗,

where U and V are unitary matrices (rotations): UU∗ = I = V V ∗, and Λ is a
diagonal matrix whose components are the eigenvalues of H .

Figure 3 illustrates the above. The model does however need knowledge of
channel state information (CSI) at the transmitter as well as at the receiver
(where it is usually measured). With such knowledge, the relative signal powers
Sn can be chosen to maximize capacity based on the common “water-filling”
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C = W

NA∑

n=1

log(1 +
Snλ2

n

I
)

Fig. 3. Capacity of MIMO with CSI

technique. Without such information, the transmit rotator V will be omitted,
but if we let all antenna inputs be equal to S/NA, where S is the total power
and NA is the number of antenna-pairs, since the rotator does not change the
power levels, the capacity expression is fundamentally unchanged:

C = W

NA∑

n=1

log[1 +
Sλ2

n

INA
]. (9)

Depending on the values of the eigenvalues, the capacity may increase propor-
tional to the number of antenna-pairs. Note, however, that in a single-carrier
system the H matrix pertains to propagation over the entire wide bandwidth
which may result in rapid variations. On the other hand, in a multiple-carrier
system each subcarrier will have its own unique H matrix which will be much
more stable and the receiver can thus operate on each subcarrier individually.
This is a distinct advantage for OFDM over CDMA.

Summarizing, the reduced interference advantage of OFDM can be equalized
in CDMA by successive interference cancellation. Only when MIMO is employed
may OFDM have a distinct advantage over CDMA systems.
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LDPC Codes�

Robert J. McEliece and Sarah L. Sweatlock

California Institute of Technology

1 Introduction

One of the most important research areas in coding theory is weight enumeration.
This is a large subject, but the basic problem is easily stated: determine or
estimate the weight enumerator (B0, . . . , Bn) for an (n, k) binary linear code,
specified by a (n − k) × n parity-check matrix H with entries from GF (2). Here

Bi = #{c ∈ GF (2)n : HcT = 0, wt(c = i}),

where wt(c) is the weight of the vector c. If the number of codewords is large,
the logarithmic weight enumerator, i.e.,

(
1
n

log B0, . . . ,
1
n

log Bn)

is more convenient. If a code belongs to a family of codes which share similar
properties, the log-weight enumerator may approach a limiting function called
the spectral shape:

1
n

log
(
B�θn�

) → E(θ), 0 < θ < 1.

In modern coding theory, H is usually very large and very sparse, e.g., the
row and column sums are bounded as n → ∞. The corresponding codes are
called low density parity-check codes. Often we are faced with large collections,
or ensembles, of long LDPC codes, which share similar properties, in which case
it may be difficult to find the spectral shape of an individual member of the
ensemble, but relatively easy to calculate the ensemble average.

In this paper, we study two popular LDPC ensembles defined by restricting
the number of ones in each row and/or column of H: the (j, k) ensemble and the
(∗, k) ensemble. The (j, k) ensemble, introduced by Gallager [1] and included
in a later study by Litsyn and Shevelev [2] consists, roughly speaking, of the
binary codes represented by parity check matrices with j ones in each column
and k ones in each row. The spectral shape of the (j, k) ensemble is given by
Equations 1-5, [1],[2]. The (∗, k) ensemble, which was not considered by Gallager,
but was included in the study by Litsyn and Shevelev, consists of the binary codes
represented by parity check matrices with k ones in each row but no restrictions

� This research was supported by the Lee Center for Advanced Networking and the
Sony Corporation.

S.W. Golomb et al. (Eds.): SSC 2007, LNCS 4893, pp. 153–161, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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on the columns. The spectral shape of the (∗, k) enumerator was determined in
[2] and is given in Equation 6.

The Entropy Function: H(x) = −x log x − (1 − x) log(1 − x) (1)

The Partition Function: Z(s) =
1
2

(
(1 − e−s)k + (1 + e−s)k

)
(2)

The Free Energy: f(s) = − log Z(s) (3)

θ(s) =
f ′(s)

k
(4)

E(s) =
j

k
(sf ′(s) − f(s)) − (j − 1)H(θ(s)). (5)

E(θ) = H(θ) + (1 − R) log
(

1 + (1 − 2θ)k

2

)
, (6)

where R is the rate of the code.
Note: Litsyn and Shevelev considered 8 different ensembles of LDPC codes

labeled A-H. Three of these ensembles, viz. A,B and H, have identical spectral
shapes, though the ensembles are slightly differerent. Indeed, Gallager’s ensemble
is Litsyn and Shevelev’s ensemble B. The ensemble we are calling (∗, k) has the
same spectral shape as ensembles E and F.

The spectral shapes for various rate 1/2 codes are shown in Figures 1 and 2.
Figure 1 shows the (j, k) ensembles, and Figure 2 shows the (∗, k) ensembles.
Both are shown along with the shifted entropy function hs(θ, R) = H(θ) −
(1 − R) log(2). Note that each of the spectral shapes is tangent to the shifted
entropy function at θ = 1

2 . We are interested in the degree of tangency and more
generally in the power series expansion of the spectral shape centered at that
point. However, calculating the coefficients of the power series expansion is not
a simple task.

The organization of this paper is as follows: in Section 2 we supply some
techniques which simplify the calculation of the power series expansion. The
reader who is not interested in the mathematics should skip to Sections 3 and 4
to see the results. Section 5 supplies a brief conclusion and discussion of future
work.

2 Exponential Generating Functions

Note: This section is based on Chapter 5 of Richard Stanley’s two-volume study
of Enumerative Combinatorics [3]. The reader already familiar with Stanley’s
work will learn little in this section.

A sequence is a mapping from the nonnegative integers N, or the positive
integers P, to a fixed field K of characteristic zero. Typically, such a sequence
will be denoted by f(0), f(1), f(2) . . .. The exponential generating function for
the sequence f(n) is the formal power series

Ef (x) =
∑

n≥0

f(n)
xn

n!
.
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Fig. 1. Spectral Shapes of Rate 1/2 (j, k) Ensembles
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Fig. 2. Spectral Shapes of Rate 1/2 (∗, k) Ensemble

Note that the original sequence f(n) can be recovered from the series Ef (x) by
formal differentiation:

f(n) =
dn

dxn
Ef (x)

∣∣∣∣∣
x=0

We summarize this important pairing with the symbol

f(n) ↔ Ef (x). (7)



156 R.J. McEliece and S.L. Sweatlock

The problems we shall address in this section are as follows. Given sequences
f : P → K, with f(1) = 1, and g : N → K, with g(0) = 1, construct sequences
k(n), h0(n), and h(n) such that

Ek(x) = Eg(Ef (x)) (8)

Eh0(x) = E
(−1)
f (x) (9)

Eh(x) = Eg(E
(−1)
f (x)) (10)

These constructions are notationally inconvenient but not conceptually diffi-
cult. The basic notion is that of a partition of an integer n, i.e., a multiset of
positive integers that sums to n. Thus {{1, 1, 2, 2, 2}} is a partition of 8. Func-
tions of λ are defined to be simply the product of the functions of each λi,
ie, if λ = {{λ1, λ2, . . . , λk}}, then for a generic f , f(λ) = f(λ1)f(λ2) . . . f(λk).
A partition of n is also characterized by its multiplicities mj = # {i : λi = j}:
n = 1m12m2 · · ·. Thus, the partition {{1, 1, 2, 2, 2}} = 1223, and in general,
f(λ) =

∏
j f(j)mj .

We will also need the notion of set theory partitions. Every set theory partition
has a corresponding number theory partition, which is simply a list of the size of
each subset, and every number theory partition has several set theory partitions
that correspond to it. As a convention, we will use capital letters, like Λ, for set
theory partitions and lower-case letters, like λ, for the corresponding number
theory partition.

Let #λ denote the number of parts in a given partition λ and r denote the
number of singletons in a set theory partition. Finally, N(λ) denotes the number
of set theory partitions that collapse to a given number theory partition.

N(λ) =
n!

n∏

i=1

(i!)mimi!

Table 1 lists a few examples, with n = 5. With this notation established, it
should be easy for the reader to follow the next three sections.

Table 1. Examples of Set and Number Theory Partitions

Set Theory Partition Λ Number Theory Partition λ #λ r N(λ)

(12)(3)(45) {1, 2, 2} 3 1 15
(13)(4)(25) {1, 2, 2} 3 1 15
(15)(24)(3) {1, 2, 2} 3 1 15

(12345) {5} 1 0 1
(12)(345) {2, 3} 2 0 10
(123)(45) {2, 3} 2 0 10
(1234)(5) {1, 4} 2 1 5
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2.1 Faà di Bruno’s Problem

Theorem 1. (Faà di Bruno’s Theorem)
Given two sequences f(n) and g(n), let k(n) be the sequence defined by Ek(x)=
Eg(Ef (x)) (see equation 7). Then,

k(n) =
∑

λ∈P (n)

N(λ)f(λ)g(#λ) where

P (n) =

⎧
⎨

⎩λ :
∑

j

λj = n

⎫
⎬

⎭

Example P (n)’s: P (1) = {1}
P (2) = {2, 11}
P (3) = {3, 21, 111}
P (4) = {4, 31, 22, 211, 1111}

Example k(n)’s: k(0) = 1
k(1) = g(1)
k(2) = f(2)g(1) + g(2)
k(3) = f(3)g(1) + 3f(2)g(2) + g(3)
k(4) = f(4)g(1) + 4f(3)g(2) + 3f(2)2g(2) + 6f(2)g(3) + g(4)

...

2.2 Lagrange Inversion Problem

Theorem 2. (Lagrange Inversion Theorem)

Eh0(x) = E
(−1)
f (x)

h0(n) =
∑

λ∈Z(n)

(−1)#λN(λ) f(λ)

Z(n) = P (n − 1) + 1

Example Z(n)’s : Z(1) = ∅
Z(2) = {2}
Z(3) = {3, 22}
Z(4) = {4, 32, 222}
Z(5) = {5, 42, 33, 322, 2222}

Example h0(n)’s: h0(1) = 1
h0(2) = −f(2)
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h0(3) = −f(3) + 3f(2)2

h0(4) = −f(4) + 10f(2)f(3) − 15f(2)3

h0(5) = −f(5) + 15f(2)f(4) + 10f(3)2

−105f(2)2f(3) + 105f(2)4

...

2.3 Parametric Problem

Problem. Given x = u(t),y = v(t). Find a general formula for

Dn =
dny

dxn
(t)|t=0.

Solution: Assume u′(0) = v(0) = 1. Note that y = v(u−1(x)). Thus, if u(t) =
Ef (t) and v(t) = Eg(t) then

y = v(u−1(x)) = Eg(Ef−1(x)). (11)

Therefore if Eh(x) = Eg(Ef−1)(x) then h(n) = vn(t).

Theorem 3. Parametric Theorem

Eh(x) = Eg(E
(−1)
f (x))

h(n) =
∑

λ∈V (n)

(−1)#λ−rN(λ) f(λ)g(r + 1)

V (n) =

⎧
⎨

⎩λ :
#λ∑

j=1

max(λj − 1, 1) = n − 1

⎫
⎬

⎭

Example V (n)’s: V (1) = ∅
V (2) = {2, 1}
V (3) = {3, 22, 21, 11}
V (4) = {4, 32, 31, 222, 221, 211, 111}

...
Example h(n)’s: h(0) = 1

h(1) = g(1)
h(2) = −f(2)g(1) + g(2)
h(3) = −f(3)g(1) + 3f(2)2g(1) − 3f(2)g(2) + g(3)
h(4) = −f(4)g(1) + 10f(2)f(3)g(1) − 4f(3)g(2)

−15f(2)3g(1) + 15f(2)2g(2) − 6f(2)g(3) + g(4)
...
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3 Example: Spectral Shape of the (j, k) Ensembles

The spectral shape of the (j, k) ensemble is defined parametrically in Equations
1-5. The degree of tangency can be found by taking derivatives of the spectral
shape and of the entropy function. At θ = 1

2 , derivatives of the entropy function
are given by Equation 12.

H(i)(1/2) =
{

0 i odd
2i(i − 2)! i even (12)

Using Theorem 3, we can calculate the derivatives of the spectral shape for the
(j, k) ensemble at the point θ = 1

2 However, these derivatives grow exponentially,
much like the derivatives of the entropy function. Rather than tabulate the
derivatives, then, we will tabulate the ratio of the nth derivative of the spectral
shape of the ensemble to the nth derivative of the entropy function. This is
shown in Table 2. Note that each element is an integer, and if it is decreased
by one, is a multiple of j(k − 1). In particular, the kth derivative is always
(−j(k − 1) + 1)H(k)(1/2).

Table 2. Ratios of the Derivatives of the (j, k) Ensemble to those of the Entropy
Functions

Derivative Ensemble
n (2,4) (3,6) (4,8) (5,10) (6,12) (7,14) (8,16)

2 1 1 1 1 1 1 1
4 -5 1 1 1 1 1 1
6 31 -14 1 1 1 1 1
8 -209 1 -27 1 1 1 1
10 1471 136 1 -44 1 1 1
12 -10625 -164 1 1 -65 1 1
14 78079 -1364 365 1 1 -90 1
16 -580865 3361 -419 1 1 1 -119
18 4361215 12496 1 766 1 1 1
20 -32978945 -53864 -5319 -854 1 1 1

4 Example: Spectral Shape of the (∗, k) Ensembles

The spectral shape of the (∗, k) is given in Equation 6. We seek the nth derivative
of E(θ) with respect to θ at θ = 1

2 .
Let

y(s) = log(s) (13)

x(θ) =
1 + (1 − 2θ)k

2
(14)

The derivatives of E(θ) = H(θ) + y(x(θ)) can be found using Theorem 1.
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The complete formula gets very complicated, but luckily we are only interested
in what happens at θ = 1

2 . With x
(

1
2

)
= 1

2 , it is simple to show that

yi

(
1
2

)
= yi = (−2)i(i − 1)! (15)

xi

(
1
2

)
= xi =

{
0 i �= k

−(−2)k−1k! i = k
(16)

Therefore, if n is not a multiple of k, the nth derivative of E(θ) at θ = 1
2 will

be precisely H(n)
(

1
2

)
, as there will be no non-zero terms in the summation.

If there is an integer i such that ki = n,

dnE

dθn
|θ= 1

2
= H(n)

(
1
2

)
+ (1 − R)(−1)i+n2n(n − 1)!k (17)

If we combine this with Equation 12, we find that

dnE

dθn

∣∣∣
θ= 1

2

=

⎧
⎨

⎩

H(n)
(

1
2

)
n not a multiple of k

H(n)
(

1
2

) (
1 + (−1)n/k(1 − R)k(n − 1)

)
n even and a multiple of k

(1 − R)(−1)n/k+n2n(n − 1)!k n odd and a multiple of k
(18)

For rate 1/2 codes, the ratios between the derivatives of the spectral shape
and those of the entropy function are given in table 3.

Table 3. Ratios of the Derivatives of the (∗, k) Ensemble to those of the Entropy
Functions

Derivative k
n 2 4 6 8 10 12 14 16

2 0 1 1 1 1 1 1 1
4 4 -5 1 1 1 1 1 1
6 -4 1 -14 1 1 1 1 1
8 8 15 1 -27 1 1 1 1
10 -8 1 1 1 -44 1 1 1
12 12 -21 34 1 1 -65 1 1
14 -12 1 1 1 1 1 -90 1
16 16 31 1 61 1 1 1 -119
18 -16 1 -50 1 1 1 1 1
20 20 -37 1 1 96 1 1 1

5 Conclusions and Future Work

Tables 2 and 3 are similar in many ways. The leading ones in each column show
that the degree of tangency in each case is k. This can be explained by extension
of the Pless Power Moment Identities [4]. We do not yet understand, however,
why the derivatives are always whole number multiples of the entropy function.
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While Faà di Bruno’s formula has been studied extensively by many others [5]
[6] [7] [8], we are not aware of any previous publication regarding the derivatives
of functions defined parametrically. The connection between these two formu-
las, possibly through Lagrange’s formula for function inversion, remains to be
explored.
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Mathematical Monthly 109 (March 1855)
8. Constantine, G.M., Savits, T.H.: A Multivariate Faà Di Bruno with Applications.

Transactions of the American Mathematical Society 348 (1996)



Remarks on a Sequence of Minimal Niven

Numbers�

H. Fredricksen1, E.J. Ionascu2, F. Luca3, and P. Stănică1
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1 Introduction

A positive integer n is called a Niven number (or a Harshad number) if it is
divisible by the sum of its decimal digits. For instance, 2007 is a Niven number
since 9 divides 2007. A q-Niven number is one which is divisible by the sum of
its base q digits (incidentally, 2007 is also a 2-Niven number). Niven numbers
have been extensively studied by various authors (see [1,2,3,4,5,7,8,10], just to
cite a few of the most recent works). We let sq(k) be the sum of digits of k in
base q.

In this note, we define two sequences in relation to q-Niven numbers. For a
fixed but arbitrary k ∈ N and a base q ≥ 2, we ask if there exists a q-Niven
number whose sum of its digits is precisely k. Therefore it makes sense to define
ak to be the smallest positive multiple of k such that sq(ak) = k. In other words,
ak is the smallest Niven number whose sum of the digits is a given positive
integer k (trivially, for every k such that 1 ≤ k < q we have ak = k). We invite
the reader to check that, for instance, a12 = 48 in base 10.
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In [6] we remarked that q-Niven numbers with only 0’s or 1’s in their q-base
representation, with a fixed sum of digits, do exist. So, we define bk as the
smallest positive multiple of k, which written in base q has only 0’s or 1’s as
digits, and in addition sq(bk) = k. Obviously, ak and bk depend on q, but we
will not make this explicit to avoid complicating the notation. Clearly, in base 2
we have ak = bk for all k but for q > 2 we actually expect ak to be a lot smaller
than bk.

2 The Results

We start with a simple argument (which is also included in [6]) that shows that the
above sequences are well defined. First we assume that k satisfies gcd(k, q) = 1.
By Euler’s theorem, we can find t such that qt ≡ 1 (mod k), and then define

K = 1 + qt + q2t + · · · + q(k−1)t.

Obviously, K ≡ 0 (mod k), and so K = kn for some n and also sq(K) = k.
Hence, in this case, K is a Niven number whose digits in base q are only 0’s and
1’s and whose sum is k. This implies the existence of ak and bk.

If k is not coprime to q, we can assume that k = ab where gcd(b, q) = 1 and
a divides qn for some n ∈ N. As before, we can find a multiple of b, say K, such
that sq(K) = b. Let u = max{n, �logq K�} + 1, and define

K ′ = (qu + q2u + · · · + qua)K.

Certainly k = ab is a divisor of K ′ and sq(K ′) = ab = k. Therefore, ak and bk

are well defined for every k ∈ N.
However, this argument gives a large upper bound, namely of size exp(O(k2))

for ak. In the companion paper [6], we present constructive methods by two
different techniques for the binary and nonbinary cases, respectively, yielding
sharp upper bounds for the numbers ak and bk. Here we point out a connection
with the q-Niven numbers. The binary and decimal cases are the most natural
cases to consider. The table below describes the sequence of minimal Niven
numbers ak for bases q = 2, 3, 5, 7, 10, where k = 2, . . . , 25.

We remark that if m is the minimal q-Niven number corresponding to k, then
q − 1 must divide m − sq(m) = kck − k = (ck − 1)k. This observation turns out
to be useful in the calculation of ak for small values of k. For instance, in base
ten, a17 can be established easily by using this simple property: 9 has to divide
c17 − 1 and so we check for c17 the values 10, 19, and see that 28 is the first
integer of the form 9m + 1 (m ∈ N) that works.

In some cases, one can find an explicitly, as our next result shows. In [6] we
proved the following result.

Lemma 1. If q > 2, then

aqm = qm
(
2q

qm−1
q−1 − 1

)
.

If q = 2, then a2m = 2m(22m − 1).
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Table 1. Values of ak in various bases

k base 2 base 3 base 5 base 7 base 10

2 6 4 6 8 110

3 21 15 27 9 12

4 60 8 8 16 112

5 55 25 45 65 140

6 126 78 18 12 24

7 623 77 63 91 133

8 2040 80 24 32 152

9 1503 1449 117 27 18

10 3070 620 370 40 190

11 3839 1133 99 143 209

12 16380 2184 324 48 48

13 16367 3887 949 325 247

14 94206 4130 574 1022 266

15 96255 30615 4995 195 195

16 1048560 6560 624 832 448

17 483327 19601 2873 629 476

18 524286 177138 3114 342 198

19 1040383 58805 6099 1273 874

20 4194300 137780 15620 1700 3980

21 5767167 354291 12369 9597 399

22 165 15070 347732 12474 2398 2398

23 16252927 529253 31119 6509 1679

24 134217720 1594320 15624 2400 888

25 66584575 1417175 781225 10975 4975

The first part of the following lemma is certainly known, but we include a short
proof for completeness.

Lemma 2. Let q ≥ 2 and k, n be positive integers. Then sq(nk) ≤ sq(k)sq(n).
In particular, k = sq(ak) ≤ sq(k) sq(ak/k). A similar inequality holds for bk,
and both such inequalities are sharp regardless of the base q.

Proof. Write

n =
∑

i=0

niq
i, and k =

∑

j=0

kjq
j , where ni, kj ∈ {0, 1, . . . , q − 1},

for all indices i and j. Certainly, the product nk =
∑

i=0

∑
j=0 nikjq

i+j is not
necessarily the base q expansion of nk, as a certain value of i + j may oc-
cur multiple times, or some products nikj may exceed q. However, sq(nk) ≤∑

i=0

∑
j=0 nikj = sq(k)sq(n), which implies the first assertion.

Let us show that the inequalities are sharp in every base q. If q = 2, then
letting k = 2m, we get, by Lemma 1, that a2m = 2m(22m − 1), s2(ak) = 2m,
s2(k) = 1, and s2(ak/k) = 2m, which shows that indeed s2(ak) = s2(k)s2(ak/k).
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Similarly, Lemma 1 implies that this inequality is sharp for an arbitrary base q as
well. �

Let us look at the base 2 case. In [6], we have shown that

Theorem 3. For all integers k = 2i − 1 ≥ 3, we have

ak ≤ 2k+k−
+ 2k − 2k−i − 1, (1)

where k− is the least positive residue of −k modulo i. Furthermore, the bound
(1) is tight when k = 2i − 1 is a Mersenne prime.

We extend the previous result in our next theorem, whose proof is similar to
the proof of Theorem 3 in [6] using obvious modifications for the second claim,
however we are going to include it here for the convenience of the reader. It is
worth mentioning that, as a corollary of this theorem, the value of ak is known
for every k which is an even perfect number (via the characterization of the even
perfect numbers due to the ancient Greeks, see Theorem 7.10 in [9]).

Theorem 4. For all integers k = 2s(2i − 1) ≥ 3, with i, s ∈ Z, i ≥ 2, s ≥ 0, we
have

ak ≤ 2s(2k+k−
+ 2k − 2k−i − 1), (2)

where k− is the least nonnegative residue of −k modulo i. Furthermore, the bound
(2) is tight when 2i − 1 is a Mersenne prime.

Proof. For the first claim, it suffices to show that the sum of binary digits of the
upper bound on (2) is exactly k, and also that this number is a multiple of k.

Indeed, from the definition of k−, we find that k + k− = ia for some positive
integer a. Since

2k+k−
+ 2k − 2k−i − 1 = 2k−i(2i − 1) + 2ia − 1

= (2i − 1)(2k−i + 2i(a−1) + 2i(a−2) + · · · + 1),

we get that 2s(2k+k−
+ 2k − 2k−i − 1) is divisible by k.

For the sum of the binary digits we have

s
(
2k+k−

+ 2k − 2k−i − 1
)

= s
(
2k+k−−1 + · · · + 2 + 1 + 2k − 2k−i

)

= s
(
2k+k−−1 + · · · + 2k + · · · + 2̂k−i + · · · + 2 + 1 + 2k

)

= s
(
2k+k−

+ 2k−1 + · · · + 2̂k−i + · · · + 2 + 1
)

= k,

where t̂ means that t is missing in that sum. The first claim is proved.
We now consider that p = 2i − 1 is a Mersenne prime. Then we need to

show that the right hand side of (2) is the smallest number that satisfies the
conditions mentioned above. The divisibility condition implies that ak = 2sx for
some x ∈ N. We need to show that x = 2k+k−

+2k −2k−i −1, or in other words,
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x is the smallest number that has the sum of its digits in base 2 equal to k and
it is divisible by p.

We know that ak ≥ 2k − 1. Let us denote by m the first positive integer with
the property that

2k+m − 1 ≡ 2j1 + 2j2 + ... + 2jm (mod p) (3)

for some 0 ≤ j1 < ... < jm ≤ k + m − 2. Notice that any other m′ > m will have
this property and if we denote by y = 2j1+2j2+...+2jm the ak = 2s(2k+m−1−y)
where j1, j2,..., jm are chosen to maximize y. Because

x = 2k+k−+1 − 1 − (2k−i + 2k+k−−1 + 2k+k−−2 + ... + 2k) ≡ 0 (mod p)

we deduce that m ≤ k−+1. Let us show that m < k−+1 leads to a contradiction.
It is enough to show that m = k− leads to a contradiction. 2k+k− ≡ 2ia ≡ 1
(mod p). Hence 0 ≡ 2j1 + 2j2 + ... + 2jm (mod p). Because 2i ≡ 1 (mod p), we
can reduce all powers 2j of 2 modulo p to powers with exponents less than or
equal to i − 1. We get at most m ≤ i − 1 such terms. But in this case, the sum
of at least one and at most i − 1 distinct members of the set {1, 2, . . . , 2i−1} is
positive and less than the sum of all of them, which is p. So, the equality (3) is
impossible in this case.

Therefore m = k− +1 and one has to choose j1, j2,...,jm in order to maximize
y. This means jm = k+m−1, jm−1 = k+m−2, . . ., and finally j1 has to be chosen
in such a way it is the greatest exponent less than k such that 2k+m − 1 − y ≡ 0
(mod p). Since j1 = k − i satisfies this condition and because the multiplica-
tive index of 2 (mod p) is i this choice is precisely the value for j1 which maxi-
mizes y. �

Next, we find by elementary methods an upper bound on ak.

Theorem 5. If k is a 2-Niven number, then

ak ≤ k
2is(k/s+1) − 1

2is − 1
,

where s = s2(k) and is is the largest nonzero binary digit of k. Moreover, the
equality s2(ak) = s2(k)s2(ak/k) holds for at least

2 log 2
N

log N
+ O

(
N

(log N)9/8

)

integers k ≤ N .

Proof. The observation allowing us to construct a multiple kdk of k such that
s2(kdk) = k out of any 2-Niven number k, is to observe that we may choose dk

such that if s2(kdk) = k, then s2(dk) = k/s2(k). Thus, if

k =
N∑

i=0

ki2i and dk =
K∑

j=0

nj2j,
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then k dk =
∑N

i=0

∑K
j=0 kinj2i+j . The equality holds if this is indeed the binary

expansion of k dk, that is, if i + j are all distinct for all choices of i and j such
that kinj �= 0.

This argument gives us a way to generate dk. Let ki1 , ki2 , . . . , kis be all the
nonzero binary digits of k, where s = s2(k). Put m = k/s. Recall that dk must
be odd, and so the least nonzero digit of dk is 1. We shall define a sequence of
disjoint sets in the following way. Set d1 = 0, and

A1 = {i1, i2, . . . , is}.

Now, let d2 = min{d ∈ N | d − i1 + i� �∈ A1, � = 1, . . . , s} − i1 and set

A2 = {d2 + i1, d2 + i2, . . . , d2 + is}.

Next, let d3 = min{d ∈ N | d − i1 + i� �∈ A1 ∪ A2, � = 1, . . . , s} − i1 and set

A3 = {d3 + i1, d2 + i2, . . . , d3 + is}.

Continue the process until we reach dm = min{d ∈ N | d − i1 + i� �∈ A1 ∪ A2 ∪
· · · ∪ Am−1, � = 1, . . . , s} − i1 and set

Am = {dm + i1, dm + i2, . . . , dm + is}.

Further, we define

dk = 2d1 + 2d2 + 2d3 + · · · + 2dm . (4)

Next, observe that

k dk =
s∑

�=1

2il

m∑

p=1

2dp =
m∑

r=1

∑

t∈Ar

2t,

and so the binary sum of digits of k dk is s2(k dk) ≤ ∑m
r=1

∑
t∈Ar

1 = ms = k,
since the cardinality of each partition set Ar is s.

Regarding the bound on ak, the worst case that can arise would be to take
dj = jis at every step in the construction of the sequence of sets Aj . Thus, an
upper bound for ak is given by

ak ≤ 1 + 2is + · · · + 2m·is =
2is(m+1) − 1

2is − 1
.

We now observe that if the equality s2(ak) = s2(k)s2(ak/k) holds, since k =
s2(ak), then k is a 2-Niven number. Finally, the last estimate follows from the
previous observation together with Theorem D of [7] concerning the counting
function of the 2-Niven numbers. �

Let us consider an example to illustrate the approach of Theorem 5. Let n =
34 = 21 + 25. Thus, s = 2, i1 = 1, i2 = 5. Now, the sequence of the sets Ai,
where i = 1, . . . , 34

2 = 17 runs as follows:

{1, 5}, {2, 6}, {3, 7}, {4, 8}, {9, 13}, {10, 14}, {11, 15}, {12, 16}, {17, 21},

{18, 22}, {19, 23}, {20, 24}, {25, 29}, {26, 30}, {27, 31}, {28, 32}, {33, 37}.
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Subtracting i1 = 1 from the smallest element of each set Ai, we can define

d34 = 20+21+22+23+28+29+210+211+216+217+218+219+224+225+226+227+232.

It is immediate that s2(34 d34) = 34 (we invite the reader to check that a34 is
strictly smaller than d34).

One can introduce a new restriction on Niven numbers in the following way:
we define a strongly q-Niven number to be a q-Niven number whose base q digits
are all 0 or 1. Obviously, every 2-Niven number is a strongly 2-Niven number.
Other examples include

q + q2 + · · · + qq, or q + q3 + q5 + · · · + q2q+1,

which are both strongly q-Niven numbers for any base q. The related problem
of investigating the statistical properties of the strongly q-Niven numbers seems
interesting and we shall pursue this elsewhere.
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8. Mauduit, C., Sárközy, A.: On the arithmetic structure of integers whose sum of
digits is fixed. Acta Arith. 81, 145–173 (1997)

9. Rosen, K.H.: Elementary Number Theory, 5th edn. (2005)
10. Vardi, I.: Niven numbers. Computational Recreations in Mathematics, 19, 28–31

(1991)



The Linear Vector Space Spanned by the

Nonlinear Filter Generator

Sondre Rønjom and Tor Helleseth

The Selmer Center,
Department of Informatics, University of Bergen

PB 7800
N-5020 Bergen, Norway

Abstract. The filter generator is an important building block in many
stream ciphers. The generator consists of a linear feedback shift register
(LFSR) of length n and a Boolean filtering function of degree d that
combines bits from the shift register and creates an output bit zt at any
time t. A new attack on stream ciphers based on linear shift registers
has recently been described by the authors in [3]. This attack is modified
to stream ciphers based on any linear shift register and not only for
LFSRs. The focal point of this paper is to present a linear description of
the filter generator in terms of matrices. The filter generator is viewed
entirely in terms of powers of a unique linear operator T together with
a vector representing the filtering function. It is proved that T embodies
the coefficient sequences described in [3]. Thus, interesting properties of
the vector space (e.g. the dimension of the equation systems) generated
by the filter generator can be analysed using theory of cyclic vector
spaces, which very elegantly complements analysis in terms of the roots
of the LFSR.

Keywords: stream ciphers, m-sequences, cyclic vector spaces.

1 Introduction

The filter generator uses a primitive linear feedback shift register(LFSR) of
length n that generates a maximal linear sequence (an m-sequence) {st} of pe-
riod 2n − 1 satisfying the recursion

n∑

j=0

cjst+j = 0, cj ∈ {0, 1}

where c0 = cn = 1 and g(x) ∈ F2[x] is a primitive polynomial. The zeroes of
g(x) are β, β2, . . . , β2n−1

where β is a primitive element in F2n , the finite field
with 2n elements. The non-singular matrix

T1 =

⎛

⎜⎜⎜⎝

0 0 . . . 0 c0

1 0 . . . 0 c1

...
...

. . .
...

...
0 0 . . . 1 cn−1

⎞

⎟⎟⎟⎠ ,
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is the companion matrix of g(x) and thus

g(T1) = T n
1 + cn−1T

n−1
1 + cn−2T

n−2
1 + . . . + T 0

1 = 0.

As g(x) is irreducible and primitive, it is also the minimal polynomial for T1,
so the above matrix is clearly invertible. Let S0 = [s0, s1, ..., sn−1] denote the
initial state of the LFSR. Any state St at time t is found by taking appropriate
powers of T1 combined with the initial state

St = [st, st+1, . . . , st+n−1] = [s0, . . . , sn−1]T t
1 ,

and the consecutive states of the LFSR are

S0, S0T1, S0T
2
1 , . . . , S0T

t
1 , . . .

which clearly is an n-dimensional cyclic vector space.
A Boolean function in n variables is a polynomial function f(x0, . . . , xn−1) ∈

λ = F2[x0, . . . , xn−1]/(x2
i +xi)0≤i<n which is a linear transformation f : F

n
2 → F2.

The algebraic degree of f is denoted by d = deg(f). At each time t, a keystream
bit zt ∈ F2 is calculated as a function of some bits of the LFSR state St

zt = f(st, . . . , st+n−1)
= f([s0, . . . , sn−1]T t

1)
= ft(s0, . . . , sn−1),

where ft(s0, . . . , sn−1) is a nonlinear function of degree d relating the initial state
S0 to the keystream bit zt.

In a recent paper [3] Rønjom and Helleseth present a new attack that re-
constructs the initial state (s0, s1, . . . , sn−1) of the binary filter generator using
D keystream bits with complexity O(D), where D =

∑d
i=1

(
n
i

)
, after a pre-

computation of complexity O(D(log2D)3). If L is the linear complexity of the
keystream then sometimes D can be replaced by L in these complexity estimates.

The main idea behind their attack is to select a polynomial that generates
zt, say the polynomial p(x) of degree D =

∑d
i=1

(
n
i

)
consisting of all zeroes βJ

where Hamming weight 1 ≤ wt(J) ≤ d = deg(f), and an irreducible polynomial
k(x) of degree n dividing p(x), such that p∗(x) = p(x)/k(x) =

∑D−n
j=0 pjx

j does
not generate zt.

In [3] the polynomial k(x) was taken to be g(x) and computing

D−n∑

j=0

pjzt+j =
D−n∑

j=0

pjft+j(s0, s1, . . . , sn−1) (1)

for t = 0, 1, . . . , n − 1 gives a nonsingular n × n equation system in the initial
state bits s0, s1, . . . , sn−1 (as long as p(x)/k(x) does not generate zt, in which
(unlikely) case one has to select a different polynomial for k(x) and do some
modifications).
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The reason why this works can be easily explained in the following way. For
any S = {s0, s1, . . . , sr−1} ⊂ {0, 1, . . . , n − 1} let sI = si0si1 · · · sir−1 . Let KI,t

be the coefficient for the monomial sI in the corresponding equation at time
t. Then the system of equations can be represented in terms of the coefficient
sequences KI,t as

zt =
∑

I

sIKI,t. (2)

The method in [3] shows that all coefficient sequences KI,t where |I| ≥ 2 corre-
sponding to all nonlinear terms obey the same linear recursion with characteristic
polynomial p∗(x) =

∑D−n
j=0 pjx

j with zeros βJ where 2 ≤ wt(J) ≤ d = deg(f).
Thus the right hand side in (1) is linear, leading to an n × n linear equation
system in the initial state.

One should observe that the underlying idea behind the filter generator attack
is that any keystream zt coming from a filter generator can be written as

zt =
2n−1∑

i=0

ciβ
it.

In the case above (with k(x) = g(x)), then

D−n∑

j=0

pjzt+j =
∑

{i|g(βi)=0}
ciβ

i = Tr(cβi)

a linear combination of the bits in the initial state. Since the left hand side is
known it is straightforward to compute the initial state. This is done detailed
and rather explicit in [2].

In [4] the attack is extended to filter generators over GF (2m). For an intro-
duction to results on algebraic attacks the reader is referred to [1], [6], and [3] for
a comparison of the attack described in this paper with fast algebraic attacks.

The main purpose in this paper is to give another view of the attack in [3]
by studying a matrix T that describes the filter generator in a natural way. We
show how the elements in the matrix T are related to the coefficient sequences.

In the next section we explain how to extend the attack in [3] on a filter
generator based on a linear feedback shift register to a filter generator based on
a general linear transformation. In Section 3 we introduce a matrix T related to
the filter generator and show some of its basic properties. In Section 4 we study
the matrix T and its role in the attack on the filter generator.

2 Attacking the LSM Filter Generator

In this section we modify our attack to include any linear shift register, or any
linear state machine(LSM), and not only linear feedback shift registers. The main
idea is that the attack on any LSM can in a natural way be reduced to the attack
of a filter generator with a linear feedback shift register.
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Let St be the n-bit state of the linear shift register at time t. Let A be the
transformation matrix of the linear shift register, i.e., St+1 = StA. We assume
that the matrix A is nonsingular since otherwise the shift register is consid-
ered to be degenerated. The minimal polynomial of an n × n matrix A is the
nonzero monic polynomial mA(x) of smallest degree such that mA(A) = 0. The
characteristic polynomial g(x) =

∑n
i=0 gix

i of A is defined by

g(x) = det(A + xI).

It is well known that g(A) = 0. We will assume that A is a non-derogatory matrix
(i.e., a matrix for which its minimal polynomial m(x) equals its characteristic
polynomial).

Then if S0 is the initial state of the LSM we have

St = S0A
t.

Let f(x0, x1, · · · , xn−1) be the Boolean function of degree d implementing the
filter generator. Then the output bit at time t is given by

f(St) = zt.

It is well known that for any non-derogatory matrix A it holds that

A = MT1M
−1

where M is a nonsingular n × n matrix and T1 is the companion matrix of g(x).
Note that we have

St = S0A
t

= S0(MT1M
−1)t

= S0MT t
1M

−1

which implies

StM = (S0M)T t
1 .

Let Ut = StM (and therefore St = UtM
−1) and observe that this leads to

Ut = U0T
t
1 .

We define and compute the Boolean function f̂ of degree d by

f̂(x0, x1, · · · , xn−1) = f((x0, x1, · · · , xn−1)M−1).

Then this leads to

zt = f(St)
= f(UtM

−1)

= f̂(Ut).
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Let U0 = (u0, u1, · · · , un−1) and observe that Ut is generated by a linear feed-
back shift register with companion matrix T1 and Ut = (ut, ut+1, · · · , ut+n−1),
where the sequence {ut} has characteristic polynomial g(x). The corresponding
output bit at time t is zt = f̂(Ut).

We can therefore apply the attack for the filter generator based on a linear
feedback shift register with generator polynomial g(x) and filter function f̂ . We
write

zt = f̂(Ut) =
∑

I

KI,tuI .

The attack works as before by calculating the polynomial p∗(x) =
∑D−n

j=0 pjx
j

that generates all coefficient sequences of degree at least 2. Then

D−n∑

j=0

pjzt+j =
D−n∑

j=0

pj f̂t+j = f̂∗
t

for t = 0, 1, · · · , n − 1.
This provides a linear n × n equation system in u0, u1, · · · , un−1. Therefore,

we solve this system and determine u0, u1, · · · , un−1. Thereafter, we determine
the initial state S0 = (s0, s1, · · · , sn−1) of the linear shift register by

S0 = U0M
−1.

The extra cost involved is the computation of f̂ which depends on the Boolean
function. The additional matrix multiplication cost in the final step does not
change the overall complexity, as n is small, say typically n = 128, in practice.

3 T-matrix

In this section we consider a matrix representation of the filter generator. From
the previous section we may assume that the sequence generator is a linear
feedback shift register. The purpose of this section is to describe a nonsingular
(2n −1)×(2n−1) matrix T which is unique for each register and invariant of the
filter function. The matrix will often be truncated to a D×D matrix (also called
T ). The columns of T will contain all distinct products of n linear equations up
to a given degree d, and the rows will be ordered by the monomials occurring
in these equations. The matrix T is then shown to be a linear operator on a
vector space V with dim(V ) = D. Then for a filtering function f ∈ λ, we may
span a sequence of equations f0, f1, . . . by right-multiplying f with powers of T ,
relating the keystream bits zt to the sequence generated by the LFSR.

Let Ŝt denote the vector with components st+I for I ⊂ {0, 1, . . . , n − 1} in
some ordering, say graded reverse lexicographic. We call Ŝt the (extended) state
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of the usual n-bit state St = (st, st+1, . . . , st+n−1). We illustrate the definition
with an example.

Example 1. Let g1(x) = x4 + x + 1 ∈ F2[x] be the generator polynomial for the
LFSR. Then for n = 4 and t = 0 we have

Ŝ0 = (s0, s1, s2, s3, s0s1, s0s2, s1s2, s0s3, s1s3, s2s3, s0s1s2, s0s1s3, s0s2s3, s1s2s3, s0s1s2s3).

Using the linear recursion st+4 = st+1 + st or s4 = s1 + s0 we obtain the next
(extended) state by increasing all indices by one. Thus the (extended) state at
time t = 1 is

Ŝ1 = (s1, s2, s3, s4, s1s2, s1s3, s2s3, s1s4, s2s4, s3s4, s1s2s3, s1s2s4, s1s3s4, s2s3s4, s1s2s3s4).

Note that using the linear recursion of the LFSR each component in Ŝ1 is a
linear combination of the components in Ŝ0. In this case we observe that the
components in Ŝ1 not containing s4 equals directly a component in Ŝ0, while the
components involving s4 can be written as

s4 = s1 + s0

s1s4 = s1 + s0s1

s2s4 = s0s2 + s1s2

s3s4 = s0s3 + s1s3

s1s2s4 = s0s1s2 + s1s2

s1s3s4 = s0s1s3 + s1s3

s2s3s4 = s0s2s3 + s1s2s3

s1s2s3s4 = s0s1s2s3 + s1s2s3.

Therefore the linear transformation that takes Ŝ0 to Ŝ1 (or equivalently Ŝt

to Ŝt+1 for any integer t) can be described by the 15 × 15 matrix t given be-
low. This matrix also occurred in the paper by Hawkes and Rose [6] in their
study of algebraic attacks. The interesting observation to be showed later is
that the elements in the powers T t of the matrix T are equal to the coeffi-
cient sequences KI,J,t defined by Rønjom and Helleseth in [3] as the coefficient
of sI in st+J = st+j0st+j1 · · · st+jr−1 where J = {j0, j1, . . . , jr−1}, or in other
words

st+J =
∑

I

sIKI,J,t. (3)

Thus the transformation matrix T given by Ŝt+1 = ŜtT has more consequences
for attacking the filter generator than anticipated in [6]. The (2n − 1) × (2n − 1)
matrix T is formed by taking all distinct products of the si’s of degree 1 ≤ i ≤ n
as columns and represent these as products of the si’s of degree 0 ≤ i ≤ n − 1.
The columns are arranged as the rows but all indices are increased by one. The
matrix is illustrated in our example for the case n = 4 by
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T =

s0

s1

s2

s3

s0s1

s0s2

s1s2

s0s3

s1s3

s2s3

s0s1s2

s0s1s3

s0s2s3

s1s2s3

s0s1s2s3

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Notice the
(
n
r

) × (
n
r

)
, r = 1, 2, . . . , n matrices along the diagonal. The matrix

in the example has minimal polynomial of degree 15 = 2n −1 and is in general a
linear operator on the (2n − 1)-dimensional vector space. Note that the columns
are ordered similar to the rows but increasing all indices by 1, and in the example
the ordering is therefore s1, s2, s3, s4, s1s2, s1s3, s2s3, s1s4 . . . etc.

Observe that each column in T above (say s1s4(= s1 + s0s1)) is written in
terms of the extended previous state vector and the coefficients in front of each
term represent the coefficient sequences at time t = 1. Furthermore, note that
all columns sI where I ⊂ {1, 2, . . . , n − 1} have weight 1 since the product SI is
already the representation in terms of Ŝ0.

The motivation by Hawkes and Rose [6] for introducing the matrix T was
to represent the transformation of a Boolean function f(st, st+1, . . . , st+n−1) =
ft(s0, s1, . . . , sn−1) at time t to the Boolean function f(st+1, st+2, . . . , st+n) =
ft+1(s0, s1, . . . , sn−1) at the next time t + 1.

Let

f(s0, s1, . . . , sn−1) = f0(s0, s1, . . . , sn−1) =
∑

I⊂{0,1,...,n−1}
cI,fsI

where cI,f ∈ {0, 1} depends on f . Let vf denote the binary vector of length
2n − 1 with component in position I being vf (I) = cI,f . Then since, popular
speaking, the effect of T is to increase the indices by one, this implies that the
binary vector representation of f1(s0, s1, . . . , sn−1) = f0(s1, s2, . . . , sn) is given
by

vf1 = Tvf0 .

Therefore, in general each output bit zt from the filter generator leads to the
equation

zt = Ŝ0T
tvf . (4)
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Thus the powers of the T matrix is a handy way of describing the equation
system coming from the filter generator.

Example 2. Let

f(s0, s1, s2, s3) = s2 + s0s1 + s1s2s3 + s0s1s2s3

be the filter function taking st, st+1, st+2, st+3 as input at time t and producing
a keystream bit zt = f(st, st+1, st+2, st+3). The coefficient vector of f = f0 is

vf = [0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1].

Then the coefficient vector of f1 is given by

vf1 = Tvf = [0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1]

corresponding to

f1(s0, s1, s2, s3) = s3 + s1s2 + s2s3s4 + s1s2s3s4

= s3 + s1s2 + s0s2s3 + s0s1s2s3.

It is interesting to note that T is also closely related to the coefficient sequences
in Rønjom and Helleseth [3] and therefore can be applied to shed more light on
this attack.

Let Ω(h(x)) be the set of sequences generated by h(x). The following lemma
on the coefficient sequences in [3] is useful.

Lemma 1. Let gr(x) be the polynomial with zeros βJ where wt(J) = r. Then
KI,J,t belongs to Ω(gi(x)gi+1(x) · · · gj(x)) where i = |I| and j = |J |.
In the following we relate the elements of T to certain coefficient sequences.
Let I and J be subsets of {0, 1, . . . , n − 1}. We index the rows of T by subsets
I = {i0, i1, . . . , ir−1} corresponding to sI = si0si1 · · · sir−1 . Similarly we index
the columns of T by subsets J = {j0, j1, . . . , js−1} where column J represents
the product s1+J defined by s1+j0s1+j1 · · · s1+jr−1 .

Theorem 1. Let T t
I,J denote the element in row I and column J in T t. Let

KI,J,t be defined as the coefficient of sI in the term st+J . Then T t
I,J = KI,J,t.

Proof. By definition we have Ŝt+1 = ŜtT and therefore that Ŝt = Ŝ0T
t. This

means that column J of T t gives a representation of st+J in terms of the com-
ponents sI in Ŝ0. It follows from (3) that

st+J =
∑

I⊂{0,1,...,n−1}
sIKI,J,t.

Therefore we have T t
I,J = KI,J,t. In particular TI,J = KI,J,1. �

We next observe that the (2n − 1) × (2n − 1) matrix T is nonsingular.
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Theorem 2. The matrix T is nonsingular.

Proof. It is sufficient to show that the matrices T1, T2, . . . Tn along the diagonal
are all nonsingular. Consider Tr and suppose a linear combination of the rows
of Tr is the all zero vector. Then

∑

|I|=r

aI(Tr)I,J = 0 for all subsets J with |J | = r .

In the case J = {j0, j1, . . . , jr−1} ⊂ {0, 1, . . . , n−2} then 1+J ⊂ {1, 2, . . . , n−1}.
It follows that the column in Tr (as well as T ) indexed by J (corresponding
to s1+j0s1+j1 . . . s1+jr−1) contains only a single one which occurs in the row
I = 1 + J . It follows that the rows in Tr indexed by any I ⊂ {1, 2, . . . , n − 1}
are linearly independent and therefore that aI = 0 for these values of I.

It remains to show that aI = 0 when 0 ∈ I. Select a row in Tr indexed by
I such that |I| = r and 0 ∈ I. Suppose a column indexed by J (corresponding
to s1+j0s1+j1 . . . s1+jr−1) contains the term sI . This requires that n − 1 ∈ J
and thus this column can be written s1+j0s1+j1 . . . s1+jr−2sn. Replacing sn by
the linear combination of s0, s1, . . . , sn−1 corresponding to the LFSR gives only
one term containing s0, namely the term s0s1+j0s1+j1 . . . s1+jr−2 . Since no other
column with a different J can provide this term, it follows that each row in Tr

indexed by an I containing 0 has a single one in this row. Hence, these rows are
linearly independent and we obtain that aI = 0 also for any I containing 0. We
therefore obtain that Tr has full rank

(
n
r

)
for any r = 1, 2, . . . , n and we conclude

that T has full rank. �

Theorem 3. The minimal polynomial mTr (x) and characteristic polynomial
cTr (x) of the square

(
n
r

) × (
n
r

)
matrix Tr are equal. Moreover, we have that

mTr (x) = gr(x) =
∏

I,wt(I)=r

(x + βI). (5)

Consequently, we have that

mT (x) = cT (x) = g1(x)g2(x) · · · gn(x) = x2n−1 + 1.

Proof. We will show that the gr(x) with its zeros being αj , where wt(j) = r,
is the characteristic polynomial of the matrix Tr satisfying T t

I,J = KI,J,t. The
degree of gr(x) is therefore

(
n
r

)
. Since gr(Tr) = 0, it is sufficient to show that

c(Tr) = 0 is impossible for any polynomial c(x) of degree less than
(
n
r

)
. So we

assume that c(Tr) = 0 for a polynomial c(x) of degree less than
(
n
r

)
and show

that this leads to a contradiction.
Let c(x) =

∑d′

l=0 clx
l such that

d′∑

l=0

clT
l
r = 0.



178 S. Rønjom and T. Helleseth

Multiplying by T t
r implies, since TI,J,t = KI,J,t for t = 0, 1, . . . and all I, J with

|I| = |J | = r, that
d′∑

l=0

clKI,J,t+l = 0.

For J = {j0, j1, · · · , jr−1}, let st+J = st+j0st+j1 · · · st+jr−1 . Then by definition,

st+J =
∑

I

KI,J,tsI = 0.

We have,

d′∑

l=0

clst+l+J =
d′∑

l=0

cl

∑

I

KI,J,t+lsI (6)

=
∑

I

(
d′∑

l=0

clKI,J,t+l)sI

= 0.

To simplify the proof we select a special J by J = {0, 1, . . . , r−1}. Expanding
st = Tr(αt), we can write

st+J =
2n−2∑

L=0

ALαtL.

The coefficient AL, where L = 2l0 + 2l1 + · · · + 2lr−1 has weight r, is known by
Rueppel [7] to be:

AL = det

⎡

⎢⎢⎢⎢⎢⎣

1 1 · · · 1
α0 α1 · · · αr−1

α2
0 α2

1 · · · α2
r−1

...
...

...
αr−1

0 αr−1
1 · · · αr−1

r−1

⎤

⎥⎥⎥⎥⎥⎦
=

∏

0≤i<j<r

(αj + αi)

where αi = α2li for i = 0, 1 . . . , r − 1. Since the li’s are distinct, we obtain
AL �= 0.

In particular, we have

st+l+J =
2n−2∑

L=0

ALα(t+l)L

=
2n−2∑

L=0

αLlALαtL.
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This leads to,

d′∑

l=0

clst+l+J =
d′∑

l=0

cl

2n−2∑

L=0

αLlALαtL

=
2n−2∑

L=0

c(αL)ALαtL

From (6) it follows that all coefficients c(αL)AL have to be zero. Since AL �= 0
for all integers of Hamming weight r, it means that c(αL) = 0 for these

(
n
r

)
values

of L. This contradicts that the degree of c(x) is less than
(
n
r

)
, so we arrive at the

conclusion that gr(x) must be the minimal polynomial of Tr. �

4 The T-matrix and Attacking the Filter Generator

For positive numbers d and D =
∑d

i=1

(
n
i

)
the D × D (truncated) matrix T has

the following block diagonal form

T =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

T1 E1,2 E1,3 . . . E1,d

0 T2 E2,3 . . . E2,d

0 0 T3 . . . E3,d

...
...

...
. . .

...
...

0 0 0 . . . Td−1 Ed−1,d

0 0 0 . . . 0 Td

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

where the Ti’s are square
(
n
i

)×(
n
i

)
matrices and the Ei,j ’s are

(
n
i

)×(
n
j

)
matrices.

Note that for a Boolean function of degree d we may without loss of generality
work with a truncated T .

For any polynomial h(x) =
∑

j hjx
j the corresponding matrix h(T ) has a

value in row I and column J given by

h(T )I,J =
∑

j

hjKI,J,t.

In particular if gi(x)|h(x) then h(T )I,J = 0 for any I with i = |I|. In particular if
we let p2(x) = g2(x)g3(x) · · · gd(x) then p2(T ) is zero except in the first n rows.
Therefore, the resulting matrix T ′ = p2(T ) is

p2(T ) = T
′
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

p2(T1) E
′

1,2 E
′

1,3 . . . E
′

1,d

0 0 0 . . . 0
0 0 0 . . . 0

...
...

...
. . .

...
...

0 0 0 . . . 0 0
0 0 0 . . . 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠
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in which only the n × D upper part is nonzero. Clearly rank(p2(T )) = n since
mp2(T )(x) = mT (x)/p2(x) = g1(x). The properties of the matrix T should be
compared with the representation described in [3], as they are the same thing
viewed differently.

Example 3. The minimal polynomial mT (x) = g1(x)g2(x)g3(x)g4(x) of T in Ex-
ample 1 is x15 + 1. Since g1(x) = x4 + x + 1, we compute p2(x) = mT (x)/(x4 +
x+ 1) = (x4 + x3 + x2 + x+ 1)(x2 + x+ 1)(x4 + x3 + 1)(x+ 1) = x11 + x7 + x8 +
x5 +x3 +x2 +x+1). Hence, p2(T ) = I +T +T 2 +T 3 +T 5 +T 7 +T 8 +T 11 = T

′

which is the matrix

T ′ = p2(T ) =

s0

s1

s2

s3

⎛

⎜⎜⎝

1 0 0 0 1 0 0 1 0 1 1 1 0 1 0
0 0 1 1 0 1 0 0 0 1 0 0 1 1 0
1 1 1 0 0 0 1 0 1 1 1 0 1 0 0
0 1 1 1 0 0 0 0 0 1 0 0 1 1 0

⎞

⎟⎟⎠

where we have removed the last 11 rows which are zero in order to save space.

Let vf denote the length D support vector for a function f(s0, . . . , sn−1) of
degree d where the coefficients are ordered in the same order as the columns of
T , and therefore in the same order as the expanded LFSR state St satisfying

ŜtT = Ŝt+1, ŜtT
2 = Ŝt+2, . . . , ŜtT

t = Ŝ2t, . . . .

Since a keystream bit is given by zt = Ŝtvf and zt+r = ŜtT
rvf = Ŝt+rvf , a

matrix relating sequence bits st, . . . st+D−1 with keystream bits zt, . . . , zt+D−1

is given by column vectors

At =

⎛

⎝T tvf T t+1vf T t+2vf . . . T t+D−1vf

⎞

⎠

and thus Ŝ0At = ŜtA0 = Ŝ0T
tA0 = [zt, zt+1, . . . , zt+D−1]. The columns of the

matrix At are the coefficient vectors of the functions studied in algebraic attacks.
Given a sequence zt = [zt, zt+1, . . . , zt+D−1] the solution Ŝt is found simply

by computing A−1
t zt. However, since D is a large number, standard methods

for solving the system usually exceeds the complexity of guessing the key. Let
f = f0, then vf1 = Tvf0 , vf2 = Tvf1 = T 2vf0 , ... and so on. In [3] the authors
compute linear equations f∗

0 , f∗
1 , . . . f∗

n−1, where

f∗
t =

D−n∑

j=0

pjft+j.

From (4) we have zt = Ŝ0T
tvf , and we obtain for 0 ≤ t < n,

z∗t =
D−n∑

j=0

pjft+j =
D−n∑

j=0

pjzt+j = Ŝ0T
tp2(T )vf .
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Note that Ŝtp2(T )vf is the coefficient vector of
∑D−n

j=0 pjKI,t+jsI and that vf∗
t

=
T tp2(T )vf0 . Let p2(T ) = T

′
, then

p2(T )At = [vf∗
t
, T vf∗

t
, . . . , T D−1vf∗

t
],

is a system of D linear equations. Clearly, it suffices to compute v
′
= p2(T )vft

restricted to a length-n vector and then compute the columns of a n × n matrix
by v

′
, T1v

′
, . . . , T n−1

1 v
′
.

Example 4. Let g1(x) be as in Example 1 and let f(x0, x1, x2, x3) = x2 +
x0x1 + x3x2x1 + x3x2x1x0 be the filter function taking st, st+1, st+2, st+3 as
input at time t producing a keystream bit zt. The coefficient vector of f is
vf = [0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1]. Thus A0 = [vf , T vf , T 2vf , . . . , T 14vf ] is
the coefficient matrix for a nonlinear system of equations of degree 4 relating the
initial state bits s0, s1, . . . sn−1 with the keystream [z0, z1, . . . , z14]. The matrix
A0 is

A0 =

s0

s1

s2

s3

s1s0

s2s0

s2s1

s3s0

s3s1

s3s2

s2s1s0

s3s1s0

s3s2s0

s3s2s1

s3s2s1s0

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 1 1 1 1 0 1 0 0 0 1
0 0 1 1 1 1 0 1 0 0 0 1 0 0 1
1 0 0 1 1 1 1 0 1 0 0 0 1 0 0
0 1 0 0 1 1 1 1 0 1 0 0 0 1 0
1 0 0 0 1 0 0 1 0 1 1 0 0 0 0
0 0 0 1 1 0 1 1 0 1 1 0 0 1 0
0 1 0 0 1 0 1 1 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0 1 1 0 0 0 0 1
0 0 1 1 0 1 1 0 1 1 0 0 1 0 0
0 0 1 0 0 1 0 1 1 0 0 0 0 1 0
0 0 0 1 0 1 0 0 1 1 0 1 1 1 0
0 0 1 0 1 0 0 1 1 0 1 1 1 0 0
0 1 0 1 0 0 1 1 0 1 1 1 0 0 0
1 0 1 0 0 1 1 0 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus, since we have already computed p2(x) in Example 3, we compute A
′

=
p2(T )A0 and find a matrix

p2(T )A0 = A
′
=

s0

s1

s2

s3

⎛

⎜⎜⎝

0 1 0 1 1 1 1 0 0 0 1 0 0 1 1
1 1 1 1 0 0 0 1 0 0 1 1 0 1 0
0 1 1 1 1 0 0 0 1 0 0 1 1 0 1
1 0 1 1 1 1 0 0 0 1 0 0 1 1 0

⎞

⎟⎟⎠

where the last 11 rows have been removed in order to save space. It is easily
verified that the rows of the above matrix are shifts of a sequence generated by
x4 +x+1). Let A

′

n×n denote the first n columns and rows of A
′
and suppose we

receive a keystream sequence zt = (1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0). Following
[3], we compute z∗t for t = 0, 1, 2, 3 and obtain a vector z∗ = [z∗0 , z∗1 , z∗2 , z∗3 ] =
[1, 0, 0, 1]. Then we find that [s0, s1, s2, s3] = A

′−1
n×nz∗ = [1, 0, 1, 1].
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The matrix T depends only on the generator polynomial and is thus unique for
each LFSR. For simplicity we assume that the generator polynomial is primitive.
Let V denote the vector space of dimension D over F2 and let W ⊆ V denote a
subspace of V . Then T is a linear transformation taking vectors v ∈ W to Tv ∈
W . Since the characteristic polynomial cT (x) of T is known, we may decompose
the vector space V completely and test the order (or minimal polynomial) of
any filtering function f ∈ λ. Following [5], we may denote by W = Z(vf , T ) =
span{vf , T vf , T 2vf , . . .} the vector space spanned by vf . Since mTi(x) = cTi(x),
we may write V as

V = V1 ⊕ V2 ⊕ · · · ⊕ Vn,

where any u ∈ Vi satisfy gi(T )u = 0. One may proceed by choosing any irre-
ducible factor gi,r(x) of gi(x) with di,r = deg(gi,r)|n, and identify the irreducible
subspaces of Vi by

Vi,r = {u ∈ Vi | gi,r(T )u = 0},

where dim(Vi,r) = di,r. Going through all ei irreducible factors of gi(x), we may
write Vi as

Vi = Vi,1 ⊕ Vi,2 ⊕ · · · ⊕ Vi,ei ,

and V then as

V = V1 ⊕ V2 ⊕ · · · ⊕ Vn

= ⊕e1
i=1V1,i ⊕e2

i=1 V2,i ⊕e3
i=1 · · · ⊕en

i=1 Vn,i.

If we select a vf of degree d at random from V , we may write vf as a sum of
vectors from different subspaces

vf = vf,1 + vf,2 + . . . + vf,d,

where each vf,i ∈ Vi may again be decomposed into vectors from the irreducible
subspaces of Vi. In the attack we compute the polynomial p2(x) =

∏d
i=2 gi(x)

and use this to compute v∗f , which can now be written as

v∗f = p2(T )vf

= p2(T )(vf1 + vf2 + . . . + vfd

= p2(T )vf1 + p2(T )(vf2 + . . . + vfd
)

= p2(T )vf1 .

In other words, p2(x) annihilates the parts of vf coming from Vi, i = 1, 2, . . . , d,
and we are left with v∗f = v∗f1

∈ V1. In general one may choose any factor r(x)
of p(x) =

∏d
i=1 gi(x) and annihilate the parts of the filtering function vf coming

from other vector spaces than the part of V annihilated by r(x).
For instance, to check whether the output of a particular function contains

the roots of a polynomial t(x), one may compute k(x) = mT (x)/t(x) and test
whether k(T )vf �= 0. Since ker(p2(T )) = V \V1 and dim(V \V1) = D−n, we have
that for a linear function v∗f there will in general be 2dim(V \V1) = 2D−n Boolean
functions of degree d which satisfies p2(T )v = v∗f . It is a natural consequence
since V is spanned by all linear combinations of vi,j , vi ∈ Vi, so there are 2D−n

combinations of v2,j , . . . vd,j for each 2n vectors v1 ∈ V1.
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5 Conclusion

We have described the attack on the filter generator presented in [3] in terms of
a linear operator with entries being the coefficient sequences described in that
paper. Thus, the properties of the filter generator (e.g. linear complexity) can
be determined by analysing the vector space it generates, which very elegantly
complements analysis in terms of the roots of the LFSR. The filter generator is
ultimately linear, but by increasing the degree of both the generator polynomial
and the filtering function, one may ensure that the dimension of the vector space
it generates is greater than the complexity of guessing the key.
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Abstract. In this paper, we investigate the existence of modular sonar
sequences of length v and mod v where v is a product of twin primes. For
v = 3 · 5 = 15, we have found some old and new examples by exhaustive
search. However, the very next case v = 5 · 7 = 35 is completely open, in
that neither we know (have) an example, nor we prove the nonexistence.
We describe simply some approach to locate a single example of modular
sonar sequences of length 35 and mod 35, assuming (or hoping) that one
exists.

Dedicated to Solomon W. Golomb on his 75th birthday

1 Introduction

A family of pseudorandom sequences with low cross correlation, good random-
ness, and large linear span has important application to code-division multiple-
access (CDMA) communications and cryptology. [4] [7] [15]

It has long been conjectured that if a balanced binary sequence of period v has
the ideal two-level autocorrelation, then v must be either 2n−1 for some positive
integer n, a prime p of type 4k+3, or a product of twin-prime. [1] [6] [7] [8] [13] [16]
It is interesting to note that those three types of integers seem to have no common
property except for the above. For the lengths v other than those listed above,
no such binary sequences of period v are currently known, neither the proof of
non-existence of such examples are completed. [8] [13] [16] On the other hand, for
each of these types of lengths, at least one easy construction for such sequences
are well-known. [1] [6] [7] [8] [12] [13] [16]

In [10] and [11], Gong introduced a new design for families of binary sequences
with low cross correlation, balance property, and large linear span. The key idea
of this new design is to use short binary periodic sequences with two-level au-
tocorrelation function and an interleaved structure to construct a set of long
binary sequences with the desired properties. This property also has significant
meaning with the application on signal detection of high-speed broad-band com-
munication system. [10] [11]

Gong’s construction [11] gives a (v2, v, 2v+3) signal set consisting of v binary
sequences of period v2 whose out-of-phase autocorrelation and cross-correlation
maximum is bounded by 2v+3. The construction requires two binary sequences

S.W. Golomb et al. (Eds.): SSC 2007, LNCS 4893, pp. 184–191, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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of period v with the ideal two-level autocorrelation, and a so-called shift sequence
of e = (e0, e1, · · · , ev−1) of length v defined over {0, 1, ..., v − 1}. She proved
that the construction works in general if there exists two sequences with the
ideal autocorrelation together with a shift sequence e with a desired property,
and specifically gave constructions for e in the following two cases: (1) when
v = pn − 1 for a prime p and a positive integer n, and (2) when v = p which is
a prime of type 4k + 3. [11]

As long as binary sequences are concerned, the above construction uses two
well-known types of balanced binary sequences of period v with the ideal two-
level autocorrelation : (1) v = 2n − 1 and (2) v = p is a prime of type 4k + 3.
These two cases cover all types of two-level binary autocorrelation sequences as
building blocks except for a class of two-level autocorrelation sequences of period
v where v is a product p(p + 2) of twin primes.

We first recognized that “shift sequence” e in [11] is the same as modular
sonar sequence of length v mod v [14]. In fact, it is essentially the same as the
one given by Games in [3] for the case v = 2n − 1 or pn − 1, or the exponential-
Welch construction in [5] [14] for the case v = p of type 4k + 3. This is in fact
given in her earlier paper published in 1995. [10]

A sonar sequence a1, a2, ..., an of length n over the integers {0, 1, ..., m − 1} is
defined by the property that

ai − ai+r = aj − aj+r =⇒ i = j, (1)

for any i, j and r in the appropriate range. [9] When this sequence is represented
as an m×n matrix (or pattern, or array) of dots and blanks, there is exactly one
dot per column corresponding to the integer ai in i-th column, and this pattern
possesses the non-periodic two-dimensional ideal autocorrelation function, where
the value of autocorrelation at shift (t, τ) is the number of dots matched when
it is shifted horizontally by t and vertically by τ with respect to itself. [9] This
property was used in the design of active sonar signals. [2] Here, ai represents
the carrier frequency at time slot i. So, m is the number of frequencies to be
used in the system. In general, one would hope the sonar sequence be as long
as possible given the number m of frequencies is fixed. In this sense, known best
sonar sequences (or m×n arrays) up to m = 100 are listed in [14]. They started
from a modular sonar sequence {ai} (mod m) and transform this into {bi} where

bi = uai + si + c (mod m) 0 ≤ i < n, (2)

where u is relatively prime to m, and s, c are any integers, and see if one can find
a long run of empty rows to be deleted so that the resulting sonar array is best
optimized. [14] Here, a modular sonar sequence is the same as a sonar sequence
except that the condition (1) is replaced by

ai − ai+r = aj − aj+r (mod m) =⇒ i = j. (3)

It is called an m×n modular sonar array, or a modular sonar sequence of length
n and mod m.
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To investigate the missing case, that is, the case v = p(p + 2), we have to find
modular sonar sequences of length v mod v. Unfortunately, however, we were
not able to show the non-existence, nor we could find one single example, except
for the one special case v = 15. Note that the case v = 15 is very special in that
it is the only case which is both a product of twin-prime and of the form 2n − 1.
For the case v = 15, using any of these examples, the construction gives easily
the families of (v2, v, 2v + 3) signal sets by way of the interleaved construction
as in [11], since the existence of balanced binary sequence of period v = p(p+2)
with the ideal two-level autocorrelation is well-known [1] [7].

In the following, we will briefly describe some results for the case v = 15 in
Section 2, and some ad-hoc tries to find an example for v = 35 in Section 3, all
of which turned out to be not successful. Following are some open questions in
this direction:

Q1: Does there exist a modular sonar sequence of length 35 and mod 35? No
example is currently known and no proof of nonexistence is known either.

Q2: Find any example of modular sonar sequence of length v and mod v where
v = p(p + 2) > 15 is a product of twin primes.

2 Case v = 3 × 5 = 15

By an exhaustive search, we found all the 9000 modular sonar sequences of
length 15 and mod 15. In the sense of the transformations given in (2) originally
given in [14], these are classified into 5 inequivalent classes, each containing 1800
sequences. For any two sequences {ai} and {bi} in the same class, there exist
some u, s, c such that bi = uai + si + c (mod 15) for 0 ≤ i < n. There are 8
choices for u, and 15 choices for both s and c, and this counts 1800 = 8 members
of each class. Representatives of these 5 inequivalent classes are

Class 1 : e1 = (1, 3, 1, 7, 11, 3, 14, 15, 8, 8, 13, 7, 4, 14, 2)
Class 2 : e2 = (1, 1, 4, 1, 9, 7, 11, 1, 8, 2, 12, 13, 4, 6, 2)
Class 3 : e3 = (1, 1, 2, 14, 2, 13, 4, 9, 13, 12, 4, 2, 11, 6, 8)
Class 4 : e4 = (1, 1, 4, 9, 4, 11, 10, 8, 5, 9, 10, 1, 9, 5, 7)
Class 5 : e5 = (1, 6, 12, 13, 10, 14, 7, 9, 7, 14, 10, 13, 12, 6, 1)

If we expand the concept of equivalence so that one is regarded to be equivalent
to its mirror image (reverse reading), then Class 3 is equivalent to Class 1, and
Class 4 is equivalent to Class 2. Thus, we have only 3 super-inequivalent classes:
Classes 1, 2, and 5.

Figures 1 and 2 show both array forms and modular difference triangles
of these three representative sequences. Here, the condition (3) can easily be
checked by the fact that each row of triangle (except for the top row correspond-
ing to the sequence itself) contains no repetitions. Here the circle denotes the
ordinary difference is negative and hence converted to a positive value by adding
15. Some observations follow as Remarks.
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(a) Class 1 (b) Class 2

Fig. 1. Array form and modular difference triangle of sequences in Classes 1 and 2

Remark 1 (Classes 1 and 2 are NOT new). Sequences from Class 1 and Class
2 are the same as those given by Games in [3] and their transformed versions
using (2). In fact, all the sequences constructed in [3] of length 15 and mod 15
are in either Class 1 or Class 2.

Remark 2 (Class 5 is new). Sequences in Class 5 are new, in the sense that no
previously known algebraic constructions produce them.

Remark 3. Some sequences in Class 5 are palindromic. That is, for example,
e5 = (e1, e2, ..., e15) shown earlier has the property that

ei = e14−i, 0 ≤ i < 15. [palindromic property] (4)

Furthermore, the first 8 terms satisfy the following:

|{ej � ej+s|0 ≤ j < 8 − s}| = 8 − s, 1 ≤ s < 8, [modified DT property] (5)

where

ej � ej+s =

⎧
⎪⎪⎨

⎪⎪⎩

15 − (ej − ej+s), if 8 ≤ ej − ej+s < 15,
ej − ej+s, if 0 < ej − ej+s < 8,
|ej − ej+s|, if − 7 ≤ ej − ej+s < 0,
15 + (ej − ej+s), if − 14 ≤ ej − ej+s < −7

and 0 < ej � ej+s < 8. This property is shown in Fig. 3.
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Fig. 2. Array form and modular difference triangle of sequences in Class 5

3 Case v = 5 × 7 = 35

First try was to generalize Class 5 of case v = 15 with palindromic property and
modified DT property. For the faster check in a computer search, we were able
to prove the following:

Lemma 1. Let e = (e0, e1, ..., ev−1) be a sequence over {0, 1, ..., v − 1} of odd
length v that is palindromic as in (4). If e is a modular sonar sequence mod v,
then its first (v + 1)/2 elements satisfy the following condition, similar to (5):

|{ej � ej+s|0 ≤ j < (v + 1)/2 − s}| = (v + 1)/2 − s, 1 ≤ s < (v + 1)/2, (6)
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Fig. 3. Modified DT property of some sequences in Class 5

where

ej � ej+s =

⎧
⎪⎪⎨

⎪⎪⎩

v − (ej − ej+s), if (v + 1)/2 ≤ ej − ej+s < v,
ej − ej+s, if 0 < ej − ej+s < (v + 1)/2,
|ej − ej+s|, if − ((v − 1)/2) ≤ ej − ej+s < 0,
v + (ej − ej+s), if − (v − 1) ≤ ej − ej+s < −((v − 1)/2)

and 0 < ej � ej+s < (v + 1)/2.

Proof. If ej � ej+s = 0, then the value ej − ej+s (mod v) appears twice in row
s of the original modular difference triangle, which is impossible.

Now, suppose the sequence does not satisfy the condition (6). Then, there
exist 0 ≤ j �= j′ < (v + 1)/2 − s such that, for some 1 ≤ s < (v + 1)/2,
ej′ � ej′+s = ej � ej+s. Denote

a = ej − ej+s, d(s, j) = ej � ej+s,

a′ = ej′ − ej′+s, d′(s, j′) = ej′ � ej′+s.

From the definition of �, then we have

a ∈ {v − d(s, j), d(s, j), −d(s, j), v + d(s, j)},
a′ ∈ {v − d(s, j′), d(s, j′), −d(s, j′), v + d(s, j′)}.

Since a = v − d(s, j) or a = d(s, j) and a′ = v − d(s, j′) or a′ = d(s, j′) all mod
v, we have 4 cases all mod v:

A : a = v − d(s, j) and a′ = v − d(s, j′) ⇒ a = a′,
B : a = d(s, j) and a′ = d(s, j′) ⇒ a = a′,
C : a = v − d(s, j) and a′ = d(s, j′) ⇒ a = v − a′,
D : a = d(s, j) and a′ = v − d(s, j′) ⇒ a = v − a′.



190 S.-J. Yoon and H.-Y. Song

For Cases A and B,

ej − ej+s = ej′ − ej′+s (mod v), 0 ≤ j �= j′ < (v + 1)/2 − s,

which is a contradiction. Similarly for the cases C and D. ��
Hoping that the new example in Class 5 of length 15 above belongs to a general
family, we have done a search for the same kind e = (e0, e1, ..., e34) of length
35 mod 35, by checking only the first 18 terms using Lemma 1. It took about 7
days on a PC to conclude that no such example exists.

Second try was to generalize and emulate the process of constructing the
binary ideal 2-level autocorrelation sequences of period v = p(p + 2) from those
of period p and p + 2. [6] However, we do not have any further idea on this
approach.

Third try was to generalize the method of Welch-Costas array of order p−1. [9]
[6] There exists an integer n such that v = p(p+2) is a divisor of 2n−1. Consider
the finite field F2n and an element β of order v in it. Successive powers of β will
produce a sequence of length v over F2n . This sequence will surely satisfy the
difference triangle property. However, the values are not over {0, 1, 2, ..., v − 1}
but over F2n . Therefore, we have to see if there exists a transformation that
sends this sequence into that over {0, 1, 2, ..., v − 1} preserving the difference
triangle property. Various approach were tested for n = 12 and v = 35, but
all failed to find any example. However, this approach finds a 212 × 35 modular
sonar array by transforming the elements of F2n into binary 12-tuples, and then
by reading them (or their cyclic shifts) as binary expansions of ordinary integers.
This example gives a hope for the next approach, and explicitly, it is

(3417, 1107, 2707, 1682, 2516, 413, 1607, 3489, 1591, 599, 3075, 2675,
2390, 3517, 468, 3268, 532, 1842, 165, 2947, 3486, 3124, 1271, 2954,
899, 199, 2151, 3684, 3352, 2647, 346, 3616, 965, 2863, 2048).

Fourth try was to use and modify the transformation (2) as done in [14], using
the example of length 35 but mod 212 found above. The goal is to find u, s, c
such that the resulting transformed version has as long run of empty rows as
possible to be deleted. The resulting array may not be modular, but we just
tried, in vain.
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Abstract. Any span n sequences can be regarded as filtering sequences.
From this observation, new randomness criteria for span n sequences
are proposed. It is proved that the feedback function of a span n se-
quence can be represented as a composition of its trace representation,
or equivalently, its discrete Fourier transform, and a permutation from
the state space of the sequence to the multiplicative group of the finite
field GF (2n), and vice versa. Significant enhancements for randomness
of span n sequences, so that de Bruijn sequences, are illustrated by some
examples.

Keywords: Nonlinear feedback shift register sequences, span n sequen-
ces, de Bruijn sequences, randomness, discrete Fourier transform.

1 Introduction

In order to seek out good pseudorandom sequence generators (PRSG) in crypto-
graphic practice, several randomness criteria have been proposed. From Shannon’s
work [22], the one-time-pad is unbreakable. Hence a good PRSG should generate
pseudorandom sequences with large periods to guarantee that different messages
are encrypted using different key streams. In the mid 1950s, Golomb proposed the
well-known three randomness postulates [12], i.e., R-1(the balance property), R-
2 (the run property), and R-3 (the ideal 2-level autocorrelation). In addition, the
ideal n-tuple distribution is also introduced. By the end of the 1960s, Berlekamp
[2] found a decoding algorithm which can reconstruct an entire codeword from a
partial known consecutive bits of the codeword. Shortly after, Massey used this
algorithm in linear feedback shift register (LFSR) sequences synthesis [18]. Us-
ing the algorithm, if the length of the shortest LFSR which generates a sequence,
known as the linear span or linear complexity of the sequence, is equal to n, then
from any known consecutive 2n bits, the full period of the sequence can be recon-
structed. This result imposed the large linear span criterion to PRSGs [21]. To
overcome the weakness of the sole linear span criterion, two more criteria related
to linear spans were introduced in the mid 1980s [21] and early 1990s [8], namely,
the linear span profile and k-error linear span (or originally referred to as sphere
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linear complexity) of a sequence, respectively. However, no such sequences with
simple implementation as well as a smoothly increased linear span profile and/or
the k-error linear span property have been found. The normalized linear span of
a sequence was also introduced as a complement of the linear span measurement
(see below for the definition or [15]).

With popularity of the public-key cryptography, researchers look for PRSGs
whose randomness is based on computational complexity. A pseudorandom se-
quence is said to have indistinguishablity if the sequence is indistinguishable
from a random bit stream generated by a truly random bit generator using any
polynomial time algorithm (see [11]).

The above constitutes a rough picture of the developments of randomness
criteria for PRSGs up to now. In the following, we single out one class of pseu-
dorandom sequences, the so-called span n sequences, and summarize their known
results and their potential applications in cryptology.

A binary sequence with period N = 2n − 1 is called a span n sequence if each
non-zero n-tuple (x0, x1, · · · , xn−1) ∈ F

n
2 occurs exactly once in every period.

This property was discussed in Golomb’s paper [13] back in the early 1980s.
A. Pseudorandom number generators (PRNGs) and Span n Sequences: A

PRNG, whenever employed in the Digital Signature Standard [16] [20] or ses-
sion key generations, must generate different pseudorandom numbers at different
time instances. On the other hand, each state of a span n sequence gives different
binary numbers. Thus, a span n sequence can be employed as a PRNG.

B. Known Results on de Bruijn Sequences and Span n Sequences: A de Bruijn
sequence of period 2n is a binary sequence with period 2n, which can be generated
by a nonlinear feedback shift register (NLFSR) with n stages. A span n sequence
can be obtained from a de Bruijn sequence of period 2n by deleting one zero from
the run of zeroes of length n, vice versa, i.e., any de Bruijn sequence can be ob-
tained from a span n sequence by adding one zero into the zero run of length n.
(A span n sequence is also referred to as a modified de Bruijn sequence in [17].)
There are 22n−1−n de Bruijn sequences, so does the span n sequences. (See [12].)

Chan, Games and Key [4] proved that the linear span of any de Bruijn se-
quence of period 2n, denoted by L, is bounded by 2n−1 + n ≤ L ≤ 2n − 1
where both the lower bound and upper bound are achievable [9]. Therefore any
de Bruijn sequence has a large linear span, the normalized linear span is > 1/2
(the normalized linear span of a sequence with period r and linear span s is
defined by s

r ), and satisfies the span n property. But it does not posses the 2-
level autocorrelation property. On the other hand, a lower bound of the linear
span of the corresponding span n sequence is dramatically dropped to n, i.e.,
n ≤ L ≤ 2n − 2. No theoretical results on linear spans of span n sequences,
except for m-sequences, have been established. Experimental results show that
the linear span of an NLFSR span n sequence, i.e., it is not an m-sequence,
varies in the range from 3n to 2n − 2 (see [17]). From a point of view in cryp-
tographic applications, an “actual” linear span of a de Bruijn sequence should
be measured in terms of the linear span of its corresponding span n sequence,
because the transformation between them are deterministic. This phenomenon
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has been observed in 1980s. However, up to now, no sub-classes of de Bruijn
sequences are discovered such that their linear spans do not differ significantly
from the linear spans of their corresponding span n sequences.

The Stream Cipher Project in ECRYPT has several submissions which used
NLFSRs [10]. However, we know a little about cycle structures of NLFSRs. (Most
of the known results are collected in Golomb’s pioneering book [12].) It has no
significant progress along this line for about 5 decades.

In this paper, we discuss the cryptographic properties of span n sequences
and a new approach to represent span n sequences.

2 The Basic Definitions

For a positive integer n, we denote that N = 2n − 1, q = 2n, Fq = GF (q), and
Fn

2 = {(x0, x1, · · · , xn−1) | xi ∈ F2}. All the sequences that are considered in this
paper are binary.

A. LFSR and NLFSR Sequences. We say that {ai} is a binary sequence
generated by a linear or nonlinear feedback shift register (LFSR or NLFSR)
with n stages if the sequence satisfies the following recursive relation

ak+n = f(ak, ak+1, · · · , ak+n−1), k = 0, 1, · · · (1)

where (a0, a1, · · · , an−1) is an initial state, and the feedback function f(x0, x1,
· · · , xn−1) is a boolean function in n variables. Any n consecutive terms of the
sequence in (1), denoted by Sk,

Sk = (ak, ak+1, · · · , ak+n−1)

represent a state of the shift register. If f(x) is linear, say f(x0, x1, · · · , xn−1) =∑n−1
i=0 cixi, ci ∈ F2, then (1) becomes ak+n =

∑n−1
i=0 ciak+i, k = 0, 1, · · ·. The

polynomial t(x) = xn +
∑n−1

i=0 cix
i is called a characteristic polynomial of the

sequence a. For the theory of LFSR and NLFSR, the reader is referred to [12].
Note that any boolean function f in n variables can be represented as a

polynomial function from Fq to F2 in terms of the Lagrange interpolation (which
has the similar formula as DFT defined below, see [15] for details). In this paper,
we restrict ourselves to the case f(0) = 0. (For f(0) �= 0, replacing f(x) by
g(x) = 1 + f(x), then all the results obtained in this paper are applicable to the
case f(0) = 1). Furthermore, we will not make any distinction among a boolean
function and its polynomial representation in notation, whose meaning depends
on the context.

B. DFT and Inverse DFT of Binary Sequences: Let {at} be a binary sequence
with period N = 2n −1. We also write {at} = (a0, a1, · · · , aN−1) as a vector. Let
α be a primitive element in Fq(q = 2n). Then the (discrete) Fourier Transform
(DFT) of {at} is defined by

Ak =
N−1∑

t=0

atα
−tk, k = 0, 1, . . . , N − 1. (2)
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The inverse DFT (IDFT) is given by

at =
N−1∑

k=0

Akαkt, t = 0, 1, . . . , N − 1. (3)

The sequence {Ak} is referred to as a spectral sequence of {at}. Let A(x) =∑N−1
k=0 Akxk. Then at = A(αt).

Fact 1. 1. A2jk = A2j

k , ∀j, k.
2. A(x) can be written as

A(x) =
∑

k

Trmk
1 (Akxk) (4)

where the k’s are (cyclotomic) coset leaders modulo N , mk | n is the length
of the coset which contains k, and Trmk

1 (x) is a trace function from F2mk

to F2 (which will be written as Tr(x) if mk = n in short). This is called a
trace representation of {at}.

C. Linear Spans: The linear span of a binary sequence a is defined as the length
of the shortest LFSR which generates the sequence, denoted by LS(a). The
corresponding characteristic polynomial is referred to as the minimal polynomial
of the sequence. If f(x) generates a sequence, then the minimal polynomial of
the sequence is a divisor of f(x). Any pseudorandom sequences employed in key
stream generators of stream ciphers or pseudorandom number generators should
have large linear spans.

For a positive integer r, an r-shift (left) of a, denoted by Lr(a), is a sequence
given by ar, ar+1, · · ·. The shift operator does not change the linear span of the
resulting sequence, i.e., LS(a) = LS(Lr(a)). If a has period N , then the linear
span of a is equal to the number of nonzeros in the spectrum of a. Furthermore,
let {A′

k} be a spectral sequence of the r-shift of a.

Fact 2. The spectral sequences of the sequence and its r shift are related by

A′
k = αrkAk, ∀k.

D. Filtering Sequence Generators: Let u = {ut} be an m-sequence of period
2n − 1, and 0 ≤ k0 < k1 < · · · < km−1 < n. A sequence a = {at} is called a
filtering sequence if

at = f(uk0+t, uk1+t, · · · , ukm−1+t), t = 0, 1, · · · (5)

where f(x0, x1, · · · , xm−1) is a boolean function in m variables. The boolean
function f is referred to as a filtering function.

3 Randomness of Span n Sequences

In this section, we first show that any span n sequence can be regarded as
a filtering sequence and propose several new randomness criteria for span n



196 G. Gong

sequences, then we show that the corresponding de Bruijn sequence of a span n
sequence with maximum linear span also has maximum linear span. In addition,
some examples of span n sequences with maximum linear span, having very poor
nonlinearity (this concept will be introduced below), are also presented in this
section.

3.1 New Randomness Criteria

A known fact that has not received much attention is that a span n sequence
in fact is a filtering sequence, which will be shown below. Recall that α is a
primitive element in Fq. Let u = {ut} be an m-sequence of period N with trace
representation Tr(x), i.e., ut = Tr(αt). Let {α0, · · · , αn−1} and {β0, · · · , βn−1}
be a pair of the dual bases of Fq (q = 2n) over F2, i.e.,

Tr(αiβj) =

⎧
⎨

⎩
1 ⇐⇒ i = j

0 ⇐⇒ i �= j.

For any element x ∈ Fq, we have the following relationship

x =
n−1∑

i=0

xiαi, xi ∈ F2 =⇒ xi = Tr(βix), i = 0, · · · , n − 1.

Let a = {ai} be a sequence with period N , and f(x) be its trace representation,
i.e., ai = f(αi), 0 ≤ i < N . Let αi =

∑n−1
j=0 ci,jαj , then ci,j = Tr(βjα

i). Let
βj = αkj , then {Tr(βjα

i)}i≥0 = Lkj (u). Hence a can be written as

ai = f(uk0+i, uk1+i, · · · , ukn−1+i), i = 0, 1, · · · . (6)

According to (5), a is a filtering sequence where the filter function is equal to
f(x0, x1, · · · , xn−1), the corresponding boolean form of f(x) (here we use the
same notation for f : Fq ← F2 in both their respective polynomial form and
boolean form), and the tap positions on u are given by (k0, k1, · · · , kn−1).

Since a span n sequence has period N , it can also be considered as a filtering
sequence with the above form. So, when sequences of period N are employed
either in stream ciphers or in pseudorandom number generators, one should
consider the possibility of applying attacks on filtering generators. There exist
several criteria for choosing f being a good filtering function. Thus, randomness
of span n sequences with applications in cryptology should be measured not only
by the randomness criteria summarized at the beginning of Section 1, but also
by the following three properties which are related to filtering functions, i.e.,
boolean functions in n variables. Let a be a span n sequence and f(x) be its
trace representation.

(F1) Nonlinearity or linear resistancy of a (in terms of f): Na = q−cf

2 (= Nf)
where cf = max{|± f̂(λ)|, λ ∈ Fq} where f̂(λ) is the Hadamard transform
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of f(x) defined by f̂(λ) =
∑

x∈Fq
(−1)Tr(λx)+f(x), ∀λ ∈ Fq. Then Nf should

be large or equivalently, cf , the maximum correlation between f(x) and
Tr(x) or f(x) and Tr(x) + 1 should be small, in order to be resistant to
correlation attacks [23] and linear cryptanalysis [19].

(F2) Propagation or differential resistancy of a (in terms of f): Da = q−Pf

2 (=
Df ) where

Pf = max{|Af (ω)|, ω ∈ Fq}
where Aa(ω) is the additive autocorrelation defined by

Af (ω) =
∑

x∈F2n

(−1)f(x)+f(x+ω), ∀ω ∈ F2n .

The magnitude of the maximum additive autocorrelation, Pf , should be
small, in order to have large differential resistancy Da, i.e., the distance
between f(x) and f(x+ a) is large (or a small change in variable x results
in a big change in f(x)), for combatting differential cryptanalysis [3]. A
link between linear cryptanalysis and differential cryptanalysis is discussed
in [5].

(F3) Algebraic immunity of a (in terms of f):

AIa = AIf = min{deg(g) | g ∈ Fn, fg = 0 or (f + 1)g = 0}
where Fn is the set consisting of all functions from Fq to F2. This should
be large in order to be resistant to algebraic attacks, whose impact on
breaking filtering generators have been recently shown in the literature
[6] [7]. (Note. Using a lower degree polynomial to approximate a filtering
sequence is not a new approach, which has been studied as a linearized
method for NLFSR back in 1970s.)

There are considerably amount of publications for constructing boolean func-
tions with some of these three properties.But none of those functions produce span
n sequences. On the other hand, the corresponding de Bruijn sequence of a span
n sequence always has a large linear span, at least 2n−1 + n (see Section 1). Thus,
the genuine unpredictability of a de Bruijn sequence is determined by the unpre-
dictability of the corresponding span n sequence. We define the linear span of the
corresponding de Bruijn sequence of a span n sequence as an illusional linear span
of the span n sequence. Let b be the corresponding de Bruijn sequence of a. In ad-
dition to the above randomness criteria F1-F3, we require that

(F4) The difference between the illusional linear span and the linear span of a
span n sequence should be small, i.e., Δ = |LS(a) − LS(b)| is small or
LS(a) ≥ 2n−1.

It is not easy to determine whether a span n sequence, regarded as a filter-
ing sequence, satisfies the randomness properties F1-F4 as well as possessing
some other randomness properties. Up to now, there are no sub-classes of span
n sequences whose feedback functions are algebraically known except for those
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constructed from m-sequences by adding one zero into the run of zeros of length
n−1. However, these randomness criteria could be served as guidelines for future
research in theory and test beds for design of secure communication systems in
practice.

3.2 Examples

Example 1. Let
a = 0111110111001010011010110001000

Then a is a span 5 sequence. Let F25 be defined by a primitive polynomial
t(x) = x5 + x4 + x3 + x + 1, and α be a root of t(x). Using the DFT, we can
obtain the trace representation of a as follows

f(x) = Tr(x + x3 + αx5 + α22x7 + α18x11 + α7x15).

Thus LS(a) = 30. The distributions of the autocorrelation, additive autocorre-
lation, and Hadamard transform are given as follows.

Autocorrelation
Ca(τ) 31 −1 −5 7 −9
#τ ′s 1 16 4 6 4

Hadamard Transform
f̂(λ) 0 4 −4 8 −8 12 −12
#λ′s 8 7 7 6 2 1 1

Additive Autocorrelation
Af(ω) 0 8 −8 −16
#ω′s 16 7 7 2

Thus, we have the nonlinearity or linear resistancy of a: Na = 10, which is
smaller than the maximum linear resistancy 12 for n = 5, and the differential
resistancy of a: Da = 8, which is poor, compared to the maximum differential
resistancy 12 for n = 5. The illusional linear span of a is equal to 27. Therefore
Δ = 3. Thus, this sequence has good linear span property whenever we consider
the difference between a and b or the linear span of a solely.

Remark 1. The above randomness criteria F1-F4 are defined for span n se-
quences. However, they could apply to any binary sequences of period N . For
n odd, both the optimal linear resistancy and optimal differential resistancy are
given by A = 2n−1 − 2(n−1)/2. For n = 5 and 7, Na = A is maximum. For the
differential resistancy, no examples have been found which satisfies Da > A.



Randomness and Representation of Span n Sequences 199

In the following example, we show randomness of a class of span n sequences
constructed by Golomb in [13].

Example 2. Let f(x) = xn + x + 1, n odd, which is primitive over F2, let
1 00 · · ·0︸ ︷︷ ︸

n−1

be an initial state of the LFSR with f(x) as the minimal polynomial

which generates a. Then we have

aN−1, a0, · · · , an−1, an, an+1, · · · , a2n−1 = 11 00 · · ·0︸ ︷︷ ︸
n−1

1 00 · · ·0︸ ︷︷ ︸
n−2

1

In [13], Golomb constructed a class of span n sequences with the constant-on-
cosets property for n odd as follows. (We say a sequence a = {ai} satisfies
the constant-on-cosets property if there exists a k-shift of a such that ak+2i =
ak+i, i = 0, 1, · · ·.) Let bi = ai +1, i = 1, · · · , N −1 and b0 = a0. Then b is a span
n sequence with the constant-on-coset property. We notice that b is obtained
by complementing every bit of a except for a0. In the following, we show that
the linear span of b is equal to 2n − 2 − n. Assume that ai = Tr(βαi), i =
0, 1, · · · , n − 1, β ∈ F2n where α is a root of xn + x + 1. Let {Aj} and {Bj} be
the spectral sequences of a and b respectively. Since {ai} satisfies the constant-
on-cosets property, then β = 1 (see [15] for this result). From the DFT, we
have

Bj =
∑N−1

i=0 biα
−ij = a0 +

∑N−1
i=1 (ai + 1)α−ij

=
∑N−1

i=1 α−ij +
∑N−1

i=0 aiα
−ij = 1 + Aj .

Since a is an m-sequence, then Aj = 0 for all the coset leaders j �= 1. Note that
A1 = β, and β = 1. Thus LS(b) = 2n −2−n, which is very large, compared with
the maximum linear span 2n − 2. However, the corresponding filtering function
of b has very poor nonlinearity, which is demonstrated as follows. Let f(x) and
g(x) be their respective trace representations of a and b. Then f(x) = Tr(x) and

g(x) =

⎧
⎨

⎩

1 + Tr(x) if x �= 0, 1
1 if x = 1
0 if x = 0.

Therefore, the Hadamard transform of g(x) is computed by

ĝ(λ) =
∑

x∈F2n

(−1)Tr(λx)+g(x)

= 2 − 2(−1)Tr(λ) −
∑

x∈F2n

(−1)Tr((λ+1)x).

Note that n is odd, so Tr(1) = 1. By examining the above summations, we have
ĝ(λ) ∈ {0, 4, 4 − 2n}. According to the definition of the nonlinearity, we have
cg = 2n − 4 and Nf = 2, i.e., the nonlinearity of g is equal to 2, which is almost
the worst nonlinearity of a nonlinear function.
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Remark 2. The poor randomness of b can also be detected from the 1-error linear
span of b, the complement of b. (Note. The k-error linear span of a sequence u
of period r is defined by Ek(u) = min{LS(u + e) | e ∈ F

r
2, H(e) = k} where

H(e) is the Hamming weight of the r-dimensional vector e, and LS(x) is the
linear span of x. ) According to the construction of b, we have b = a + e where
e = (1, 0, · · · , 0). Thus E1(b) = E1(a + e) = n. From this observation, it is worth
to look at k-error linear spans of sequences through their nonlinearity, since
the latter have received a tremendous large amount of publications in recent
30 years.

4 Relationships Between DFTs and Feedback Functions

In this section, we investigate how feedback functions of span n sequences can
be derived from their trace representations, i.e., their DFTs, and vice versa.
Let a = {ak} be a span n sequence, and f(x) be its trace representation. Let
Sk = (ak, · · · , ak+n−1) be the kth state of a, S = {Sk | 0 ≤ k < N}, and F

∗
q ,

the multiplicative group of Fq which are represented by powers of α, a primitive
element in Fq. Let

σ : Sk → αk, 0 ≤ k < N, or equivalently

σ : (ak, ak+1, · · · , ak+n−1) → (ck,0, ck,1, · · · , ck,n−1)
(7)

where αk =
∑n−1

j=0 ck,jα
j . This map induces a permutation on ZN in the following

fashion:

π =
(

0 1 · · · k · · · N − 1
t0 t1 · · · tk · · · tN−1

)
(8)

where tk is determined by
∑n−1

j=0 ak+jα
j = αtk . Since σ is a one-to-one map

between S and F
∗
q , then σ−1 exists. Therefore, we may write

ak = f(αk) = f(σσ−1(αk)) = f(σ(Sk)), k = 0, 1, · · · . (9)

We define b = {bk}, and bn+k = g(Sk), k = 0, 1, · · · where g(x) = f ◦ σ(x), the
composition of f and σ, as a feedback function of an NLFSR, and an initial state
of b is given by (b0, · · · , bn−1) = (aN−n, · · · , aN−1). According to (1) in Section
2, b is generated by the NLFSR with n stages and the feedback function g. From
(9), we have a = Ln(b). Thus, we have established the following theorem.

Theorem 1. With the above notation, then g = f ◦ σ is the feedback function
of an NLFSR which generates b, an (N − n)-shift of a, i.e., b = LN−n(a). So,
they have equal linear spans.

Given that f(x) is a feedback function of an NLFSR which generates a span n
sequence a, we would like to ask what the trace representation of a is. Again,
using (1),

an+k = f(Sk), k = 0, 1, · · · , where

Sk = (ak, ak+1, · · · , ak+n−1).
(10)
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We now define the same map as defined in (7). From (10),

an+k = f(σ−1σ(Sk)) = f(σ−1(αk)), k = 0, 1, · · · . (11)

We denote h(x) = f ◦ σ−1(x), and c = {ck} where ck = h(αk), k = 0, 1, · · ·.
Then h(x) is the trace representation of c. However, from (11), c = Ln(a), so
that a = LN−n(c). Let {Ak} and {Ck} be the spectral sequences of a and c
respectively. Applying Fact 2, we have Ak = α−nkCk. Thus, we have proved the
inverse of Theorem 1, which is shown below.

Theorem 2. Let f(x) be a feedback function of an NLFSR which generates a
span n sequence a. Then the trace representation of a is given by f ◦σ−1(α−nx).

For an easy comparison of these relationships, we summarize the results of The-
orems 1 and 2 into the following table.

Relationships Between DFT and Feedback Functions

DFT Feedback Function in an NLFSR

a ↔ f(x) f ◦ σ(x) generates LN−n(a)

a ↔ f ◦ σ−1(α−nx) f generates a

In the following example, a feedback function is a linear function, since there
are no span 3 sequences which are not m-sequences. This is only for demonstrat-
ing the principle of these two theorems.

Example 3. Let n = 3, and α be a primitive element in F23 with α3+α+1 = 0.
Let f(x0, x1, x2) = x0 + x1, and let (a0, a1, a2) = (0, 0, 1) be an initial state of
the LFSR. Then a = 0010111, an m sequence of period 7. Using the DFT (see
Section 2), the trace representation of a is equal to Tr(αx). In the following,
we use the method in Theorem 2 to obtain the trace representation of a. We
compute the polynomial form f(x0, x1, x2) = Tr(α6x). The map σ is given by
the following table.

tk σ : Sk → αk,
exponents k

2 001 0
1 010 1
6 101 2
4 011 3
5 111 4
3 110 5
0 100 6

Using the DFT of functions (or the Lagrange interpolation), we compute that
σ−1(x) = α4x + x2 + α3x4. Thus

f ◦ σ−1(x) = Tr(α6(α4x + x2 + α3x4)) = Tr(α4x).
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According to Theorem 2, the trace representation of a is given by f◦σ−1(α−3x) =
Tr(αx), which verifies the result computed directly from the DFT of a.

Remark 3. The power of Theorems 1 and 2 is a new look at the span n sequences.
These results present specific relationships between a feedback function in an
NLFSR which generates a span n sequence and the trace representation of the
sequence through the one-to-one map from its state space to the multiplicative
group of Fq. On the other hand, this provides an algebraic way to construct
span n sequences, which is different from all the known constructions for de
Bruijn sequences. For example, one could find all span 7 sequences with linear
span 21 by testing all the sums of three m-sequences of period 127. In other
words, one does the search for span n sequences with trace representations of
Tr(γ1x

r + γ2x
s + γ3x

t) where γi’s run through F
∗
q and r, s and t are distinct

coset leaders modulo 2n − 1. Since there are 18 different cosets modulo 127, the
search complexity is of 18 × 17 × 16 × 1272 = 78967584 trials. (Note a shifted
sequence of a span n sequence preserves the span n property. Thus the choices
of γi are reduced from 1273 down to 1272. ) So, the corresponding de Bruijn
sequences of period 128 are obtained.

Remark 4. For an arbitrary NLFSR, if the period of an output sequence, say r,
divides N , then the results are similar as those of Theorems 1 and 2 in which the
primitive element α is replaced by an element α in Fq with order r. However, if
r is not a divisor of N , then such relationships do not exist.
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Abstract. The filter generator consists of a linear feedback shift reg-
ister (LFSR) and a Boolean filtering function that combines some bits
from the shift register to create a key stream. A new attack on the fil-
ter generator has recently been described by Rønjom and Helleseth [6].
This paper gives an alternative and extended attack to reconstruct the
initial state of the LFSR using the underlying subspace structure of the
filter sequence. This improved attack provides further insight and more
flexibility in performing the attack by Rønjom and Helleseth. The main
improvements are that this attack does not use the coefficient sequences
that were fundamental in the previous attack and also works in the un-
likely cases when the original attack needed some modifications.

Keywords: filter generator, m-sequences, stream ciphers.

1 Introduction

The filter generator uses a primitive linear feedback shift register(LFSR) of length
n that generates a maximal linear sequence (an m-sequence) {st} of period 2n −1
satisfying a recursion with a characteristic polynomial h(x) ∈ F2[x] of degree n

being a primitive polynomial with primitive zeroes α2i

for i = 0, 1, . . . , n − 1.
At each time t, a key stream bit bt is calculated as a function of certain bits in

some positions (e0, e1, . . . , em−1) in the LFSR state (st, st+1, . . . , st+n−1) at time
t using a Boolean function f(x0, x1, . . . , xm−1) of degree d in m ≤ n variables.
The key stream is defined by

bt = f(se0+t, se1+t, . . . , sem−1+t).

Since st is a linear combination of the bits in the initial state (s0, s1, . . . , sn−1)
this leads to an equation system

bt = ft(s0, s1, . . . , sn−1) for t = 0, 1, . . .

which has the initial state of the LFSR as a solution.
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In a recent paper Rønjom and Helleseth [6] present a new attack that re-
constructs the initial state (s0, s1, . . . , sn−1) of the binary filter generator using
D key stream bits with complexity O(D), where D =

∑d
i=1

(
n
i

)
, after a pre-

computation of complexity O(D(log2D)3). If L is the linear complexity of the
key stream, and we have enough information about the zeros of the minimal
polynomial of {bt}, then D can be replaced by L in these complexity estimates.

The underlying method in [6] is based on the observation that since

st =
n−1∑

i=0

(kiα
t)2

i

= Tr(k0α
t)

the key stream {bt} can be generated by a characteristic polynomial p(x) with
zeroes among αJ , where the Hamming weight of the binary representation of J ,
denoted wt(J), obey 1 ≤ wt(J) ≤ d = deg(f). Therefore, we have

bt =
∑

β

dββt

where p(β) = 0 and dβ ∈ F2n . This polynomial can be constructed in the pre-
computation phase with complexity O(D(log2D)3)([3]).

The attack in [6] selects an irreducible polynomial k(x) of degree n (in [6] the
LFSR polynomial h(x) was selected) and define the polynomial p∗(x) = p(x)

k(x) .

The authors apply the shift operator p∗(x) =
∑D−n

j=0 pjx
j to the key stream {bt}

i.e., compute
D−n∑

j=0

pjbt+j =
D−n∑

j=0

pjft+j(s0, s1, . . . , sn−1)

and show that this almost always leads to a nonsingular linear equation system in
the unknowns s0, s1, . . . , sn−1. The main reason for this is the simple observation
that

D−n∑

j=0

pjbt+j =
∑

β

dβp∗(β)βt

where the summation now is only over the n zeros of k(x) which implies that
the right hand side for the case when k(x) = h(x) can be written as Tr(dααt), a
linear combination of bits in the initial state. In the very unlikely case that the
system is trivial which happens when dα = 0 one needs to do some modifications.
In [6], the irreducible polynomial h(x) was suggested for k(x), while a better
choice in this case would be, for example, to use a different irreducible polynomial
for k(x). This will be described in this paper.

In [8], the authors view the filter generator entirely in terms of powers of a
unique linear operator T together with a vector representing the filtering func-
tion. It is proved that T embodies the coefficient sequences described in [6]. Thus,
properties of the vector space generated by the filter generator (for instance its
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dimension) can be determined using theory of cyclic vector spaces, which very
elegantly complements analysis in terms of the roots of the LFSR.

In this paper we will take advantage of the fact that the filtering sequence can
be written in a unique way as a sum of sequences with characteristic polynomials
being all irreducible divisors of p(x). Using a suitable shift operator to the key
stream we can find any component sequence and find relations that determine
the initial state of the LFSR for any key stream {bt}. Since this paper only needs
the linear subspace structure of the filter generator, the results can be directly
extended to a combination generator as well. Although the technique presented
here resembles the the technique in [6], it also covers some cases occurring with
a small probability where the original technique would need some modifications.

2 Notations and Preliminaries

For more general treatments on minimal polynomials of the elements in a finite
field or a periodic sequence, and the DFT of sequences, the reader is referred
to [1].

A. The Left Shift Operator

Let q = ph for a prime integer p and a positive integer h. We denote a finite
field of q elements by Fq. Let V (Fq) be a set consisting of all infinite sequences
whose elements are taken from Fq, i.e.,

V (Fq) = {s = (s0, s1, · · ·) | st ∈ Fq}.

Then V (Fq) is a linear space over Fq. Let s = (s0, s1, s2, · · ·) ∈ V (Fq) whose
elements satisfy the linear recursive relation

st+n =
n−1∑

i=0

hist+i, t = 0, 1, · · ·

Here s is referred to as a linear recursive sequence or it is a linear feedback
shift register sequence generated by h(x) = xn − (hn−1x

n−1 + · · · + h0), and
h(x) is called a characteristic polynomial of s. Furthermore, the characteristic
polynomial of s with the smallest degree is called the minimal polynomial of s.

The (left) shift operator E is defined as follows:

Es = (s1, s2, s3, · · ·) and Ets = (st, st+1, st+2, · · ·), t ≥ 1.

By convention, we write E0s = Is = s, where I is the identity transformation
on V (Fq). Then h(E)s = 0 where 0 = (0, 0, · · ·) is the zero sequence in V (Fq).
For any non-zero polynomial h(x) ∈ Fq[x], we use G(h) to represent the set
consisting of all sequences in V (Fq) with

h(E)s = 0.

Since h(E) is also a linear transformation, G(h) is a subspace of V (Fq).
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B. m-sequences and Trace Representation

Let h(x) be a primitive polynomial of degree n, and let α be a root of h(x) in
Fqn . Then the trace representation of s is given by

st = Tr(βαt), t = 0, 1, . . . , β ∈ Fqn

where Tr(x) denotes the trace function Tr(x) =
∑n−1

i=0 xqi

which is a map from
Fqn to Fq.

C. Filter Generators

Select m ≤ n integers: 0 ≤ e0 ≤ e1 ≤ . . . ≤ em−1 < n, and a polynomial function
f(x0, x1, . . . , xm−1) ∈ λ = Fq[x0, x1, . . . , xm−1]/(x2

i + xi)0≤i<m of degree d that
can be written in the form

f(x0, x1, · · · , xm−1) =
∑

ci0,i1,···,im−1x
i0
i0

xi1
i1

· · · xim−1
im−1

, ci0,i1,···,im−1 ∈ Fq.

A sequence b = {bt} whose elements are defined by a function of

bt = f(se0+t, se1+t, . . . , sem−1+t) = ft(s0, s1, . . . , sn−1), t = 0, 1, . . . ,

is called a filtering sequence and the function f(x0, x1, . . . , xm−1) is called a
filtering function.

D. DFT and Inverse DFT

Let {at} be a sequence over Fq with period N = qn − 1. Recall that α is a
primitive element in Fqn . Then the (discrete) Fourier Transform (DFT) of {at}
is defined by

Ak =
N−1∑

t=0

atα
−tk, k = 0, 1, . . . , N − 1.

The inverse DFT (IDFT) is given by

at =
1
N

N−1∑

k=0

Akαkt, t = 0, 1, . . . , N − 1.

The sequence {Ak} is referred to as a spectral sequence of {at}. Let A(x) =∑N−1
k=0 Akxk. Then A(x) can be written as

A(x) =
∑

k

Trmk
1 (Akxk)

where the k’s are (cyclotomic) coset leaders modulo N , and mk | n is the length
of the coset which contains k. This is called a trace representation of {at}.
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3 Minimal Polynomials with Constrained Weights

In this section, we show the linear subspace structure of the filtering sequence.
For a positive integer i, we define

H(i) =
n−1∑

j=0

ij ,

where

i =
n−1∑

j=0

ijq
j , 0 ≤ ij < q,

which is referred to as the weight of i. Note that H(i) is the usual Hamming
weight of i when q = 2. It is known that the zeroes of the minimal polynomial
of the filtering sequence b is a subset of the following set:

Ω(d) = {αi | H(i) ≤ d} (1)

where d = deg(f) (≤ m).
Let gαi(x) be the minimal polynomial of αi over Fq which is given by

gαi(x) =
ni−1∏

j=0

(x − αi·qj

),

where ni is the size of the coset Ci which is the smallest number satisfying
i ≡ i · qni (mod qn − 1). Let T be the set consisting of all coset leaders modulo
qn − 1 and define

T (d) = {i ∈ T | 1 ≤ H(i) ≤ d}.

Let p(x) be the polynomial

p(x) =
∏

i∈T (d)

gαi(x)

and pi(x) the polynomial

pi(x) =
p(x)

gαi(x)
.

Then G(p) can be written as a direct sum of the subspaces of V (Fq)

G(p) = G(gαt1 ) ⊕ . . . ⊕ G(gαts )

where tj ∈ T (d) = {t1, . . . , ts}. Let ak = {ak,t}t≥0 ∈ G(gαk) where k ∈ T (d).
Then we have that

bt =
∑

k∈T (d)

ak,t. (2)
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4 Extractors

Let L be the linear span of {bt}, and l = D − n. From (1), L is upper bounded
by the cardinality of Ω(d), which is D =

∑d
i=1

(
n
i

)
for q = 2, the binary case.

We may write
bt =

∑

k∈T (d)

Trnk
1 (Ak(βαt)k) , t = 0, 1, . . .

and
ak,t = Trnk

1 (Ak(βαt)k) , t = 0, 1, . . . .

For k with gcd(k, qn − 1) = 1, let pk(x) = xl +
∑l−1

i=0 cix
i, ci ∈ Fq. For avoiding

the use of a double index, we denote

ak = {ak,t}t≥0 = {at}t≥0.

Then we have
at = Tr(Ak(βαt)k), t = 0, 1, . . . .

In the following, we show how to separate or extract ak from b = {bt}, the
filtering sequence. From (2), it follows that

b =
s∑

j=1

aj

and thus we have that

pk(E)b =
s∑

j=1

pk(E)aj . (3)

Note that pk(E)aj = 0 if j �= k. Thus (3) above becomes

pk(E)b = pk(E)ak. (4)

If we let

ut = al+t +
l−1∑

i=0

ciai+t, t = 0, 1, . . . ,

we see that
pk(E)ak = (u0, u1, . . .).

Going through the details, we have that

ut = al+t +
l−1∑

i=0

ciai+t

= Tr(Ak(βαl+t)k) +
l−1∑

i=0

ciTr(Ak(βαi+t)k)
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= Tr(Akβk(alk +
l−1∑

i=0

ciα
ik)αtk)

= Tr(Akβkpk(αk)αtk)
= Tr(rαtk)

where r = Akβkpk(αk) and pk(αk) �= 0 since αk is not a root of pk(x). In general,
we have therefore shown that

ut = Tr(rαtk), t = 0, 1, . . . , (5)

where r = Akβkpk(αk).
Let g(x) be the minimal polynomial of b = {bt} and gcd(k, 2n − 1) = 1. It

follows that

gαk(x)|g(x) ⇔ (u0, . . . , un−1) �= 0
⇔ Ak �= 0.

We call (u0, u1, · · · , un−1) an extractor of b.

5 Extract β

Let (b0, b1, . . . , bD−1) be known (or sometimes (b0, b1, . . . , bL−1) may be suffi-
cient). The goal is to obtain β. This yields the initial state of the LFSR which
produces b. From (4) we have that

pk(E)b = pk(E)ak = (u0, u1, . . .)

and so
u0 =

l∑

i=0

cibi

u1 =
l∑

i=0

cibi+1

...

un−1 =
l∑

i=0

cibi+n−1.

Thus (u0, u1, . . . , un−1) can be computed from (b0, b1, . . . , bD−1). From (5) and
(u0, . . . , un−1) a system of equations with unknown β is formed

u0 = Tr(r) = r + r2 + . . . + r2n−1

u1 = Tr(rγ) = γr + γ2r2 + . . . + γ2n−1
r2n−1

...
un−1 = Tr(rγn−1) = γn−1r + γ(n−1)2r2 + . . . + γ(n−1)2n−1

r2n−1

where γ = αk.
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Let xi = r2i

and αi = αk2i

for i = 0, 1, . . . , n − 1 and form a matrix M of the
form

M =

⎡

⎢⎢⎢⎢⎢⎣

1 1 . . . 1
α0 α1 . . . αn−1

α2
0 α2

1 . . . α2
n−1

...
...

...
αn−1

0 αn−1
1 . . . αn−1

n−1

⎤

⎥⎥⎥⎥⎥⎦
.

Then we have

M

⎡

⎢⎢⎢⎣

x0

x1

...
xn−1

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

u0

u1

...
un−1

⎤

⎥⎥⎥⎦ .

Since M is a Vandermonde matrix and (u0, u1, . . . , un−1) is known, by solving
this equation system we obtain x0 = r. This gives

r = Akβkpk(αk)

and therefore
βk = rA−1

k [pk(αk)]−1

where r and pk(αk) are known. The remaining task is how to find Ak. Note that
{Ak} is related to a discrete Fourier transform of {bt}, which can be computed
through expansion of bt.

6 How to Compute {Ak}
In this section, we restrict ourselves to the binary case. For the q-ary (q > 2)
case, there is a similar result which is omitted here for simplicity. In the binary
case, f(x0, x1, . . . , xm−1) =

∑
(i1,···,ie) ci1,...,iexi1 · · · xie . Then

bt = f(se0+t, . . . , sem−1+t) =
∑

i

ci1,...,iesi1+t · · · sie+t

where i = {i1, . . . , ie} ⊂ {e0, . . . , em−1}. Let

yt = si1+tsi2+t · · · sie+t, t = 0, 1, . . .

be a typical term. Since st = Tr(βαt), we expand yt

yt = Tr(βαi1+t)Tr(βαi2+t) · · · Tr(βαie+t)

= [
n−1∑

v1=0

(βαi1+t)2
v1 ] · · · [

n−1∑

ve=0

(βαie+t)2
ve

]

=
e∏

j=1

(
n−1∑

v=0

αij2v

x2v

)

=
∑

v1,v2,...,ve

αi12v1+i22
v2+···+ie2ve

x2v1+2v2+···+2ve
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where x = βαt.

The following theorem is useful for simplifying the calculations of yt.

Theorem 1. We have,

yt =
∑

k∈T (e)

Yi,kxk, i = (i1, . . . , ie)

where
Yi,k =

∑

u

∑

J

αJ(u) (6)

where

J(u) =
v∑

j=1

2tj hj

and u = (u0, u1, . . . , un−1) is a solution of
{∑n−1

i=0 ui2i ≡ k (mod 2n − 1)∑n−1
i=0 ui = e, ui ≥ 0,

and where J is obtained by a partition of {i1, . . . , ie} into v parts for which the
jth part has size utj with

{t1, . . . , tv} = {i | ui �= 0}, v ≤ e

and hj is the sum of elements in the jth part.

Remark. The inner sum of (6) can be described by the sum of the distinct
permutation terms in the determinant of the following e × e matrix:

Eu =

⎡

⎢⎢⎢⎢⎣

ut1︷ ︸︸ ︷
αi12t1 · · ·αi12t1

ut2︷ ︸︸ ︷
αi12t2 · · · αi12t2 · · ·

utv︷ ︸︸ ︷
αi12tv · · · αi12tv

...
...

...
αie2t1 · · ·αie2t1

αie2t2 · · · αie2t2 · · · αie2tv · · · αie2tv

⎤

⎥⎥⎥⎥⎦
.

In other words,
∑

J αJ(u) is equal to the sum of different permutation terms of Eu.
When utj = 1 for all j = 1, · · · , v (v = e in this case), we have

∑
J αJ(u) =detEu,

the determinant of Eu.

Theorem 2. For
bt =

∑

k∈T (d)

Trnk
1 (Ak(βαt)k),

then
Ak =

∑

i:ci1,...,ie �=0

Yi,k

where Yi,k is given by Theorem 1.
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The proofs of these two theorems including the q-ary case, q > 2, can be found
in [2] or derived from the results in [4] and [5].

Example 1. Consider a filter generator consisting of an m-sequence s = {st}
generated by h(x) = x4 + x + 1 ∈ F2, where we can write {st} in terms of the
zeroes of h(x) by

st = Tr(βαt), t = 0, 1, . . . , β ∈ F24 ,

filtered through the simple function

f(x0, x1, x3) = x0x1x3

with deg(f) = 3. Let (e0, e1, e2) = (0, 1, 3) be the tapping positions from the
register such that the key stream sequence {bt} is given by

bt = ft(s0, s1, s2, s3) = f(st+e0 , st+e1 , st+e2) = stst+1st+3.

In this example we assume that we observe

bt = 0001000010 . . .

The cosets modulo 15 are

C1 = {1, 2, 4, 8}
C3 = {3, 6, 12, 9}
C5 = {5, 10}
C7 = {7, 14, 13, 11},

so the corresponding polynomials gαi(x) are

gα(x) =
∏

i∈C1

(x + αi) = x4 + x + 1

gα3(x) =
∏

i∈C3

(x + αi) = x4 + x3 + x2 + x + 1

gα5(x) =
∏

i∈C5

(x + αi) = x2 + x + 1

gα7(x) =
∏

i∈C7

(x + αi) = x4 + x3 + 1.

Thus in this case p(x) is simply the polynomial

p(x) =
∏

i∈T (3)

gαi(x) =
14∑

i=0

xi =
x15 + 1
x + 1

.

We can write bt in terms of the zeroes of g(x) as

bt =
∑

k∈T (3)

Trnk
1 (Akxk).
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Using Theorem 1, we now compute {Ak}. For k = 1,we determine u = (u0, u1,

u2, u3) satisfying
∑3

i=0 ui2i ≡ 1 (mod 15) and
∑3

i=0 ui = 3. There is only one
such u, which is u = (0, 0, 2, 1), so we compute

A1 = α4e0+4e1+8e2 + α4e0+8e1+4e2 + α8e0+4e1+4e2

= α13 + α5 + α

= α14.

For k = 3, we have two possible values u ∈ {(0, 1, 0, 2), (3, 0, 0, 0)} such that∑3
i=0 ui2i ≡ 3 (mod 15) and

∑3
i=0 ui = 3. Both values of u lead to values of

J(u) being α4, so

A3 = α4 + α4 = 0.

For k = 5, we have two possible values of u ∈ {(1, 2, 0, 0), (0, 0, 1, 2)}, leading to
values of J(u) being α3 and α12 respectively, and therefore

A5 = α3 + α12 = α10.

For k = 7, we find only one value of u = (1, 1, 1, 0), leading to J(u) being α8,
and thus

A7 = α8.

Thus we can now write the sequence bt as

bt = Tr4
1(α

14x + α8x7) + Tr2
1(α

10x5)

where x = βαt, t = 0, 1, . . .. We have that the linear span of b is L = 10, which is
equal to the degree of the polynomial r(x) = gα(x)gα5(x)gα7(x). We may choose
k = 7 and compute

p7(x) =
r(x)

gα7(x)
= x6 + x5 + x4 + x3 + 1.

Then we have that ui = Tr(rα7i) where

r = A7β
7p7(α7)

= β7α8α14

= β7α7.

Then from bt = 0001000010 . . ., we compute p7(E)b and obtain

ut = bt+6 + bt+5 + bt+4 + bt+3 + bt

for 0 ≤ t ≤ 3 and get (u0, u1, u2, u3) = (1, 0, 1, 0). Then we compute the matrix
M defined by

M =

⎡

⎢⎢⎣

1 1 1 1
α7 α14 α13 α11

α14 α13 α11 α7

α6 α12 α9 α3

⎤

⎥⎥⎦
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and M1 obtained by interchanging column 1 of M with uT , and equals

M1 =

⎡

⎢⎢⎣

1 1 1 1
0 α14 α13 α11

1 α13 α11 α7

0 α12 α9 α3

⎤

⎥⎥⎦ .

Then using M1, M and u we compute x0 = r by

x0 =
det M1

detM
= α13,

and since we also have x0 = r = β7α7, we are left with solving for β and get
β = α3. So the initial state is found to be

(s0, s1, s2, s3) = (Tr(β), T r(βα), T r(βα2), T r(βα3))
= (Tr(α3), T r(α4), T r(α5), T r(α6))
= (1, 0, 0, 1).

7 Which Extractor Can Be Computed Efficiently?

The initial state (s0, s1, · · · , sn−1) is given by st = Tr(βαt), t = 0, 1, · · · , n − 1.
From Sections 4-5, we know that we can select any k with gcd(k, 2n − 1) = 1
and Ak �= 0 to solve for β, to obtain the initial state. The computation of the
extractor is to compute Ak and pk(αk). For any k with gcd(k, 2n − 1) = 1,
the cost for computing pk(x) are almost the same. Thus the difference between
different k only depends on the computational cost of Ak.

If there, for example, is a term of degree d in the Boolean function and the
corresponding tap positions are equally spaced, i.e., leading to a term yt =
st+i0st+i0+j · · · st+i0+(d−1)j then for k = 2d −1, Ak �= 0 (see [7]). In this case, let
αi = α2ij , i = 0, 1, · · · , d−1. From Theorems 1-2, since there is only one solution
for u, we have

A2d−1 = detEu = αi0(2d−1)det

⎡

⎢⎢⎢⎢⎢⎣

1 1 · · · 1
α0 α1 · · · αd−1

α2
0 α2

1 · · · α2
d−1

...
...

...
αd−1

0 αd−1
1 · · · αd−1

d−1

⎤

⎥⎥⎥⎥⎥⎦
= αd−1

0

∏

0≤i<j<d

(αj + αi)

the last equality is due to fact that the matrix is a Vandermonde matrix. This is
the simplest case for computing Ak. The computation complexity is the cost to

compute
(

d
2

)
= d(d−1)

2 multiplications of two elements in F2n , which is about

O(d2n2) binary multiplications. In general, if the tap positions are not equally
spaced, as long as there is one k with H(k) = d such that Ak �= 0. In this case,
there is only one solution for u in Theorem 1. Thus Ak = detEu (see Remark
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in Section 6). Therefore the computation of Ak for such a k is to compute the
determinant of an d×d matrix Eu whose entries are taken from F2n . This is the
simplest case among all the other k’s, since for the other k’s where H(k) < d,
there may be more than one solution for u in Theorem 1.

There is a trade-off between the number of known key stream bits of b = {bt}
and the computation cost in the pre-computation stage for forming an extractor.
If we know D = |Ω(d)| consecutive bits of b, then we do not need to compute the
minimal polynomial of b. Thus, we could select k wisely to reduce the cost for
this particular Ak in pre-computation. If we only know L consecutive bits where
L is the linear span of b, then we have to compute the minimal polynomial of
b, which can be done by computing spectra {Ak} by the method of Theorem
1 and Theorem 2. In this case, there is no saving for choosing special k, since
we need to compute Ak for all k ∈ Γ (d). We summarise the linear subspace
attack, described in Sections 3-6, with these two different approaches in the pre-
computation stage in the following two procedures.

Summary of the Linear Subspace Attack:
Procedure 1: D = |Ω(d)|
Input: b0, · · · , bD−1

Output: s0, · · · , sn−1

1. Pre-computation:
– For k with gcd(k, 2n − 1) = 1 and H(k) = d, compute Ak, and select k

such that Ak �= 0.
– Compute pk(x) =

∏
j �=k,j∈Γ (d) gαj (x).

2. Compute the first n bits of pk(E)b, which is u = (u0, · · · , un−1).
3. Compute x0 = detM1

detM where M is a Vandemonde matrix given by αi =
αk2i

, i = 0, 1, · · · , n − 1 (see Section 5) and M1 is the matrix obtained by
replacing the first column of M by uT .

4. Solve for β from x0 = βkAkpk(αk).
5. Compute st = Tr(βαt), t = 0, · · · , n − 1.
6. Return s0, · · · , sn−1.

Procedure 2: L, the linear span of b
Input: b0, · · · , bL−1

Output: s0, · · · , sn−1

1. Pre-computation:
– For j ∈ Γ (d), compute Aj and gαj (x) if Aj �= 0.
– Randomly select k with gcd(k, 2n −1) = 1, and compute the polynomial

pk(x) =
∏

j �=k:Aj �=0,j∈Γ (d) gαj (x).
The steps 2-6 are the same as in Procedure 1.

8 Discussion

If we do not know D (or L) consecutive bits of {bt}, then, consequently, we do not
have n consecutive bits of {ut}. However, if we know (uk0 , uk1 , · · · , ukn−1) from
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some known segments of b, then the matrix M in Section 5 becomes M = (mij)
where mij = αki2

j

which may not be a Vandermonde matrix. In order to have
the linear subspace attack to work when detM �= 0, we can have an extractor
for retrieving β, and therefore, the initial state of s. So, the problem becomes
that of how many bits we actually need to form an extractor with nonzero
determinant of M . The method developed here can be also be applied to the
case of combinatorial generators. We will discuss it in a separate paper.
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Stănică, P. 162
Sweatlock, Sarah L. 153

Tang, Xiaohu 62
Taylor, Herbert 106

Viterbi, Andrew 147

Wang, Qiang 119

Yoon, Sung-Jun 184
Yu, Nam Yul 37


	Title Page
	Preface
	Organization
	Table of Contents
	Periodic Binary Sequences: Solved and Unsolved Problems
	Introduction
	Polynomial Conjectures
	``Randomness Properties" of $m$-Sequences
	Relationships of These ``Randomness Properties" (Among All Binary Sequences with Period $2^n$-1)
	My Main Conjecture
	Cyclic Hadamard Difference Sets when $v=2^n-1$


	On Boolean Functions Which Are Bent and Negabent
	Introduction
	Preliminaries
	Quadratic Bent-Negabent Functions
	Maiorana-McFarland Bent-Negabent Functions
	Transformations Which Preserve Bent-Negabentness
	Orbits of Bent-Negabent Functions

	Strongly Primitive Elements
	Introduction
	First Main Result
	Extensions
	Proof of the Proposition
	Relatively Strongly Primitive Elements
	A Second Generalization
	A Relative Version
	A Key Formula
	Some Graph Theory
	Character Sums
	Proof of the Theorem

	The Perfect Binary Sequence of Period 4 for Low Periodic and Aperiodic Autocorrelations
	Introduction
	Binary Sequences with Low Autocorrelation
	Binary Sequences with Low Periodic Autocorrelation
	Binary Sequences with Good Aperiodic Autocorrelation
	The Perfect Sequence

	The Perfect Sequence for Binary Sequences with Optimal Periodic Autocorrelation
	Product Sequences
	Binary Sequences with Optimal Periodic Autocorrelation Magnitude

	The Perfect Sequence for Binary Sequences with Good Aperiodic Autocorrelation
	The Legendre and the Perfect Sequences
	The BCJ-KP Sequences and the Perfect Sequence

	Conclusion

	On the Dual of Monomial Quadratic p-ary Bent Functions
	Introduction
	Preliminaries
	Quadratic Monomial Bent Functions
	Conclusion

	A New Family of Gold-Like Sequences
	Introduction
	Preliminaries
	Main Result
	Two Quadratic Forms and Their Trace Transforms
	Proof of Theorem 5

	Sequencings and Directed Graphs with Applications to Cryptography
	Introduction
	Quick Trickle Permutations
	Sequenceable Groups
	Applications to Inter-Round Mixing
	Quasi-Complete Latin Squares and Quasi-Sequencings
	Searching for Sequencings
	Graphic Representation of Quick Trickle Permutations
	Some Remarks and Observations

	Double Periodic Arrays with Optimal Correlation for Applications in Watermarking
	Background
	Method to Increase the Number of Sequences without Increasing the Original Correlation Value
	OOC, DDS, and Double Periodic Arrays of Families
	Two New Multiple Target Families for Extended Costas and for Sonar Arrays

	Method to Increase the Number of Dots
	New Matrix Construction for Watermarking
	Method to Increase the Number of Dots and the Number of Sequences with Optimal Correlation

	Conclusion

	Sequences for Phase-Encoded Optical CDMA
	Introduction
	System Model
	Connection with PAPR Problem
	Construction of Good Asynchronous Sequences for Phase Encoding OCDMA 
	Generalized Bent Functions
	Construction

	M-ary Modulation

	Packing Centrosymmetric Patterns of $n$ Nonattacking Queens on an $n \times n$ Board
	Introduction
	Results

	Cyclotomic Mapping Permutation Polynomials over Finite Fields
	Introduction
	Cyclotomic Mapping Permutation Polynomials
	Permutation Binomials and Generalized Lucas Sequences

	Single-Track Gray Codes and Sequences
	Introduction
	Constructions, Properties, and Nonexistence Results
	Open Problems

	The Asymptotic Behavior of $\pi$-Adic Complexity with $\pi^2 = -2$
	Introduction
	Basic Lemmas
	Sets of Accumulation Points
	Existence Results for $T_\pi(S)$s
	Conclusions

	Shannon Capacity Limits of Wireless Networks
	Summary
	Capacities in Multipath-Fading Channels
	Capacities in the Presence of Other-User Interference
	CDMA with Successive Interference Cancellation
	Multiple-Input Multiple-Out (MIMO) Antenna Systems

	Some Mysterious Sequences Associated with LDPC Codes
	Introduction
	Exponential Generating Functions
	Faà di Bruno's Problem
	Lagrange Inversion Problem
	Parametric Problem

	 Example: Spectral Shape of the $(j,k)$ Ensembles 
	 Example: Spectral Shape of the $(*,k)$ Ensembles 
	Conclusions and Future Work

	Remarks on a Sequence of Minimal Niven Numbers
	Introduction
	The Results

	The Linear Vector Space Spanned by the Nonlinear Filter Generator
	Introduction
	Attacking the LSM Filter Generator
	T-matrix
	 The T-matrix and Attacking the Filter Generator
	Conclusion

	Existence of Modular Sonar Sequences of Twin-Prime Product Length
	Introduction
	Case $v=3\times 5=15$
	Case $v=5\times 7=35$

	Randomness and Representation of Span $n$ Sequences
	Introduction
	The Basic Definitions
	Randomness of Span $n$ Sequences
	New Randomness Criteria
	Examples

	Relationships Between DFTs and Feedback Functions

	On Attacks on Filtering Generators Using Linear Subspace Structures
	Introduction
	Notations and Preliminaries
	Minimal Polynomials with Constrained Weights
	Extractors
	Extract $\beta$ 
	How to Compute ${A_k}$
	Which Extractor Can Be Computed Efficiently?
	Discussion

	Author Index



